UNIT — I: Transmission Lines - |

Types, Transmission Lineparameters,Transmission Line Equations,Primary and
Secondary Constants, infinite line, Characteristic Impedance, Attenuation constant
,Phase shift constant, Propagation Constant, Phase and Group Velocities, Wave
length.

LEARNING OBJECTIVES
Upon completion of this UNIT, you will be able to:
1. State what a transmission line is and how transmission lines are used.
2. Explain the operating principles of transmission lines.
3. Describe the types of transmission lines.
4. . Explain the theory of the transmission line.
6. Define the term LUMPED CONSTANTS in relation to a transmission line.

7. Define the term DISTRIBUTED CONSTANTS in relation to a transmission
line.

8. Define the term CHARACTERISTIC IMPEDANCE
Measurable Student Learning Outcomes:
At the completion of the course(UNIT-I), students will be able to...
1. Identify the characteristics of transmission lines and transmission line circuits.

2. Analyze transmission line circuits.



INTRODUCTION TO TRANSMISSION LINES

A TRANSMISSION LINE is a device designed to guide electrical energy from
one point to another. It is used, for example, to transfer the output rf energy of a
transmitter to an antenna. This energy will not travel through normal electrical wire
without great losses. Although the antenna can be connected directly to the
transmitter, the antenna is usually located some distance away from the transmitter.
On board ship,the transmitter is located inside a radio room and its associated
antenna is mounted on a mast. A transmission line is used to connect the
transmitter and the antenna.

The transmission line has a single purpose for both the transmitter and the antenna.
This purpose is to transfer the energy output of the transmitter to the antenna with
the least possible power loss. How well this is done depends on the special
physical and electrical characteristics (impedance and resistance) of the
transmission line.

TERMINOLOGY

All transmission lines have two ends (see figure 1-1). The end of a two-wire
transmission line connected to a source is ordinarily called the INPUT END or the
GENERATOR END. Other names given to this end are TRANSMITTER END,
SENDING END, and SOURCE. The other end of the line is called the OUTPUT
END or RECEIVING END. Other names given to the output end are LOAD END
and SINK
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Figure 1-1 Basic transmission line

You can describe a transmission line in terms of its impedance. The ratio of
voltage to current (Ein/lin) at the input end is known as the INPUT IMPEDANCE
(Zin). This is the impedance presented to the transmitter by the transmission line



and its load, the antenna. The ratio of voltage to current at the output (Eou/lout) end
Is known as the OUTPUT IMPEDANCE (Zoy). This is the impedance presented to
the load by the transmission line and its source. If an infinitely long transmission
line could be used, the ratio of voltage to current at any point on that transmission
line would be some particular value of impedance. This impedance is known as the
CHARACTERISTIC IMPEDANCE.

TYPES OF TRANSMISSION MEDIUMS
The different types of TRANSMISSION MEDIUMS in electronic applications.

Each medium (line or wave guide) has a certain characteristic impedance value,
current-carrying capacity,and physical shape and is designed to meet a particular
requirement.

The five types of transmission mediums that we will discuss in this chapter include
PARALLEL-LINE, TWISTED PAIR, SHIELDED PAIR, COAXIAL LINE, and
WAVEGUIDES. The use of a particular line depends, among other things, on the
applied frequency, the power-handling capabilities, and the type of installation.

Two-Wire Open Line

One type of parallel line is the TWO-WIRE OPEN LINE illustrated in figure 1-2.
This line consists of two wires that are generally spaced from 2 to 6 inches apart by
insulating spacers. This type of line is most often used for power lines, rural
telephone lines, and telegraph lines. It is sometimes used as a transmission line
between a transmitter and an antenna or between an antenna and a receiver. An
advantage of this type of line is its simple construction. The principal advantages
of this type of line are the high radiation losses and electrical noise pickup because
of the lack of shielding. Radiation losses are produced by the changing fields
created by the changing current in each conductor.
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Figure 1-2.Parallel two-wire line.

Another type of parallel line is the TWO-WIRE RIBBON (TWIN LEAD)
illustrated in figure1-3.This type of transmission line is commonly used to connect
a television receiving antenna to a home television set. This line is essentially the
same as the two-wire open line except that uniform spacing is assured by
embedding the two wires in a low-loss dielectric, usually polyethylene. Since the
wires are embedded in the thin ribbon of polyethylene, the dielectric space is partly
air and partly polyethylene.

LOW - LOSS
DIELECTRIC

Figure 1-3.—Two-wire ribbon type line.

Twisted Pair

The TWISTED PAIR transmission line is illustrated in figure 1-4. As the name
implies, the line consists of two insulated wires twisted together to form a flexible
line without the use of spacers. It is not used for transmitting high frequency
because of the high dielectric losses that occur in the rubber insulation. When the
line is wet, the losses increase greatly.



Figure 1-4 Twisted pair.

Shielded Pair

The SHIELDED PAIR, shown in figure 1-5, consists of parallel conductors
separated from each other and surrounded by a solid dielectric. The conductors are
contained within a braided copper tubing that acts as an electrical shield. The
assembly is covered with a rubber or flexible composition coating that protects the
line from moisture and mechanical damage. Outwardly, it looks much like the
power cord of a washing machine or refrigerator.
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Figure 1-5.—Shielded pair.

The principal advantage of the shielded pair is that the conductors are balanced to
ground,; that is, the capacitance between the wires is uniform throughout the length
of the line. This balance is due to the uniform spacing of the grounded shield that
surrounds the wires along their entire length. The braided copper shield isolates the
conductors from stray magnetic fields.



Coaxial Lines

There are two types of COAXIAL LINES, RIGID (AIR) COAXIAL LINE and
FLEXIBLE (SOLID) COAXIAL LINE. The physical construction of both types is
basically the same; that is, each contains two concentric conductors.

The rigid coaxial line consists of a central, insulated wire (inner conductor)
mounted inside a tubular outer conductor. This line is shown in figure 3-6. In some
applications, the inner conductor is also tubular.

The inner conductor is insulated from the outer conductor by insulating spacers or
beads at regular intervals. The spacers are made of Pyrex, polystyrene, or some
other material that has good insulating characteristics and low dielectric losses at
high frequencies.
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Figure 1-6 Air coaxial line.

The chief advantage of the rigid line is its ability to minimize radiation losses. The
electric and magnetic fields in a two-wire parallel line extend into space for
relatively great distances and radiation losses occur. However, in a coaxial line no
electric or magnetic fields extend outside of the outer conductor. The fields are
confined to the space between the two conductors, resulting in a perfectly shielded
coaxial line. Another advantage is that interference from other lines is reduced.

The rigid line has the following disadvantages: (1) it is expensive to construct; (2)
it must be kept dry to prevent excessive leakage between the two conductors; and
(3) although high-frequency losses are somewhat less than in previously mentioned
lines, they are still excessive enough to limit the practical length of the line.

Leakage caused by the condensation of moisture is prevented in some rigid line
applications by the use of an inert gas, such as nitrogen, helium, or argon. It is



pumped into the dielectric space of the line at a pressure that can vary from 3 to 35
pounds per square inch. The inert gas is used to dry the line when it is first
installed and pressure is maintained to ensure that no moisture enters the line.

Flexible coaxial lines (figure 1-7) are made with an inner conductor that consists of
flexible wire insulated from the outer conductor by a solid, continuous insulating
material. The outer conductor is made of metal braid, which gives the line
flexibility. Early attempts at gaining flexibility involved using rubber insulators
between the two conductors. However, the rubber insulators caused excessive
losses at high frequencies.
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Figure 1-7 Flexible coaxial line

Because of the high-frequency losses associated with rubber insulators,
polyethylene plastic was developed to replace rubber and eliminate these losses.
Polyethylene plastic is a solid substance that remains flexible over a wide range of
temperatures. It is unaffected by seawater, gasoline, oil, and most other liquids that
may be found aboard ship. The use of polyethylene as an insulator results in
greater high-frequency losses than the use of air as an insulator. However, these
losses are still lower than the losses associated with most other solid dielectric
materials.

Waveguides

The WAVEGUIDE is classified as a transmission line. However, the method by
which it transmits energy down its length differs from the conventional methods.
Waveguides are cylindrical, elliptical, or rectangular (cylindrical and rectangular
shapes are shown in figure 1-8). The rectangular waveguide is used more requently
than the cylindrical waveguide.
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Figure 1-8.—Waveguides.

The term waveguide can be applied to all types of transmission lines in the sense
that they are all used to guide energy from one point to another. However, usage
has generally limited the term to mean a hollow metal tube or a dielectric
transmission line. In this chapter, we use the term waveguide only to mean "hollow
metal tube.” It is interesting to note that the transmission of electromagnetic energy
along a waveguide travels at a velocity somewhat slower than electromagnetic
energy traveling through free space.

A waveguide may be classified according to its cross section (rectangular,

elliptical, or circular), or according to the material used in its construction (metallic
or dielectric). Dielectric waveguides are seldom used because the dielectric losses
for all known dielectric materials are too great to transfer the electric and magnetic
fields efficiently.

The installation of a complete waveguide transmission system is somewhat more
difficult than the installation of other types of transmission lines. The radius of
bends in the waveguide must measure greater than two wavelengths at the
operating frequency of the equipment to avoid excessive attenuation.The cross
section must remain uniform around the bend. These requirements hamper
installation in confined spaces. If the waveguide is dented, or if solder is permitted
to run inside the joints, the attenuation of the line is greatly increased. Dents and
obstructions in the waveguide also reduce its breakdown voltage, thus limiting the
waveguide’s power-handling capability because of possible arc over.Great care
must be exercised during installation; one or two carelessly made joints can
seriously inhibit the advantage of using the waveguide.



LENGTH OF A TRANSMISSION LINE

A transmission line is considered to be electrically short when its physical length is
short compared to a quarter- wavelength of the energy it is to carry.

A transmission line is electrically long when its physical length is long compared
to a quarter-wavelength of the energy it is to carry. You must understand that the
terms "short" and "long" are relative ones. For example, a line that has a physical
length of 3 meters (approximately 10 feet) is considered quite short electrically if it
transmits a radio frequency of 30 kilohertz. On the other hand, the same
transmission line is considered electrically long if it transmits a frequency of
30,000 megahertz.

When power is applied to a very short transmission line, practically all of it reaches
the load at the output end of the line. This very short transmission line is usually
considered to have practically no electrical properties of its own, except for a small
amount of resistance.

However, the picture changes considerably when a long line is used. Since most
transmission lines are electrically long (because of the distance from transmitter to
antenna), the properties of such lines must be considered. Frequently, the voltage
necessary to drive a current through a long line is considerably greater than the
amount that can be accounted for by the impedance of the load in series with the
resistance of the line.

TRANSMISSION LINE THEORY

The electrical characteristics of a two-wire transmission line depend primarily on
the construction of the line. The two-wire line acts like a long capacitor. The
change of its capacitive reactance is noticeable as the frequency applied to it is
changed. Since the long conductors have a magnetic field about them when
electrical energy is being passed through them, they also exhibit the properties of
inductance. The values of inductance and capacitance presented depend on the
various physical factors that we discussed earlier. For example, the type of line
used, the dielectric in the line, and the length of the line must be considered. The
effects of the inductive and capacitive reactances of the line depend on the
frequency applied. Since no dielectric is perfect, electrons manage to move from
one conductor to the other through the dielectric. Each type of two-wire
transmission line also has a conductance value. This conductance value represents
the value of the current flow that may be expected through the insulation. If the



line is uniform (all values equal at each unit length), then one small section of the
line may represent several feet. This illustration of a two-wire transmission line
will be used throughout the discussion of transmission lines; but, keep in mind that
the principles presented apply to all transmission lines. We will explain the
theories using LUMPED CONSTANTS and DISTRIBUTED CONSTANTS to
further simplify these principles.

LUMPED CONSTANTS

A transmission line has the properties of inductance, capacitance, and resistance
just as the more conventional circuits have. Usually, however, the constants in
conventional circuits are lumped into a single device or component. For example, a
coil of wire has the property of inductance. When a certain amount of inductance is
needed in a circuit, a coil of the proper dimensions is inserted. The inductance of
the circuit is lumped into the one component. Two metal plates separated by a
small space, can be used to supply the required capacitance for a circuit. In such a
case, most of the capacitance of the circuit is lumped into this one component.
Similarly, a fixed resistor can be used to supply a certain value of circuit

resistance as a lumped sum. Ideally, a transmission line would also have its
constants of inductance,capacitance, and resistance lumped together, as shown in
figure 1-9. Unfortunately, this is not the case.Transmission line constants are
distributed , as described below.
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Figure 1-9 .—Equivalent circuit of a two-wire transmission line.

DISTRIBUTED CONSTANTS

Transmission line constants, called distributed constants, are spread along the
entire length of the transmission line and cannot be distinguished separately. The
amount of inductance, capacitance, and resistance depends on the length of the
line, the size of the conducting wires, the spacing between the wires, and the



dielectric (air or insulating medium) between the wires. The following paragraphs
will be useful to you as you study distributed constants on a transmission line.

Inductance of a Transmission Line

When current flows through a wire, magnetic lines of force are set up around the
wire. As the current increases and decreases in amplitude, the field around the wire
expands and collapses accordingly. The energy produced by the magnetic lines of
force collapsing back into the wire tends to keep the current flowing in the same
direction. This represents a certain amount of inductance, which is expressed in
microhenrys per unit length . Figure 1-10 illustrates the inductance and magnetic
fields of a transmission line.

Figure 1-10.—Distributed inductance

Capacitance of a Transmission Line

Capacitance also exists between the transmission line wires, as illustrated in figure
1-11. Notice that the two parallel wires act as plates of a capacitor and that the air
between them acts as a dielectric. The capacitance between the wires is usually
expressed in picofarads per unit length . This electric field between the wires is
similar to the field that exists between the two plates of a capacitor.
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Figure 1-11.—Distributed capacitance.



Resistance of a Transmission Line

The transmission line shown in figure 1-12 has electrical resistance along its
length. This resistance is usually expressed in ohms per unit length and is shown as
existing continuously from one end of the line to the other.

Figure 1-12.—Distributed resistance.

Leakage Current

Since any dielectric, even air, is not a perfect insulator, a small current known as
LEAKAGECURRENT flows between the two wires. In effect, the insulator acts as
a resistor, permitting current to pass between the two wires. Figure 1-13 shows this
leakage path as resistors in parallel connected between the two lines. This property
is called CONDUCTANCE (G) and is the opposite of resistance.

Conductance in transmission lines is expressed as the reciprocal of resistance and
Is usually given in micromhos per unit length.

Figure 1-13.—L eakage in a transmission line.
CHARACTERISTIC IMPEDANCE OF A TRANSMISSION LINE

You learned earlier that the maximum (and most efficient) transfer of electrical
energy takes place when the source impedance is matched to the load impedance.
This fact is very important in the study of transmission lines and antennas. If the
characteristic impedance of the transmission line and the load impedance are equal,
energy from the transmitter will travel down the transmission line to the antenna



with no power loss caused by reflection.
Definition and Symbols

Every transmission line possesses a certain CHARACTERISTIC IMPEDANCE,
usually designated as Zo. Zois the ratio of E to | at every point along the line. If a
load equal to the characteristic impedance is placed at the output end of any length
of line, the same impedance will appear at the input terminals of the line. The
characteristic impedance is the only value of impedance for any given type and
size of line that acts in this way. The characteristic impedance determines the
amount of current that can flow when a given voltage is applied to an infinitely
long line. Characteristic impedance is comparable to the resistance that determines
the amount of current that flows in a dc circuit.

In a previous discussion, lumped and distributed constants were explained. Figure
1-15, view A,shows the properties of resistance, inductance, capacitance, and
conductance combined in a short section of two-wire transmission line. The
illustration shows the evenly distributed capacitance as a single lumped capacitor
and the distributed conductance as a lumped leakage path. Lumped values may be
used for transmission line calculations if the physical length of the line is very
short compared to the wavelength of energy being transmitted. Figure 3-15, view
B, shows all four properties lumped together and represented by their conventional
symbols.
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Figure 1-15 —Short section of two-wire transmission line and equivalent circuit.

VOLTAGE CHANGE ALONG A TRANSMISSION LINE

Let us summarize what we have just discussed. In an electric circuit, energy is
stored in electric and magnetic fields. These fields must be brought to the load to
transmit that energy. At the load, energy contained in the fields is converted to the
desired form of energy.

Transmission of Energy

When the load is connected directly to the source of energy, or when the
transmission line is short, problems concerning current and voltage can be solved
by applying Ohm’s law. When the transmission line becomes long enough so the
time difference between a change occurring at the generator and the change
appearing at the load becomes appreciable, analysis of the transmission line
becomes important.

Transmission Line — A two conductor structure that can support a TEM wave.



TEM wave: An electromagnetic wave wherein both the electric and magnetic
fields are perpendicular to the direction of wave propagation.

A passive, linear, two port device that allows bounded E. M. energy to flow from
one device to another
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Figure 1-16.—Transmission line.
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Figure 1-17.—Lumped-element equivalent circuit.

Where: R = resistance/unit length L = inductance/unit length C = capacitance/unit
length G = conductance/unit length
=~ resistance of wire length Az is RAz.

Distributed elements

The line parameters R, L, C and G are distributed over the entire length of the
transmission line. Hence they are called distributed parameters. They are also
called primary constants.

Line parameters of a transmission line



The line parameters of a transmission line are resistance, inductance, capacitance
and conductance.

Resistance (R) is defined as the loop resistance per unit length of the transmission
line. Its unit is ohms/km,

Inductance (L) is defined as the loop inductance per unit length of the transmission
line. Its unit is Henries/km.

Capacitance (C) is defined as the shunt capacitance per unit length between the two
transmission lines. Its unit is Farad/km.

Conductance (G) is defined as the shunt conductance per unit length between the
two transmission lines. Its unit is mhos/km.

The Telegrapher Equations
Consider a section of “wire”:
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Figure 1-18.—Lumped-element equivalent circuit.

Where: R = resistance/unit length L = inductance/unit length C = capacitance/unit
length G = conductance/unit length
=~ resistance of wire length Az is RAz.

Using KVL, we find:
v(z+Az,1)-v(z,1)=-RAzi(z,1)- f,,ﬁz_ﬁ" ;‘”

and from KCL:
(z+Az)-i(2.1)=-6Azv(z,t)-Caz L ET)

at



Dividing the first equation by Az, and then taking the limit as

Az — 0:

lim viz+Az t)—v(z.1) 1 —Ri(zj}—f,af{z’”

AZ0 Az ot

which, by definition of the derivative, becomes:

ov(z.,1) _ R f.{zﬁ_ia; (z.7)
o0z ot
Similarly, the KCL equation becomes:
ar(z.t) _ _5:/(2;}_4*5""2’”
oz ot

If v(z.#)and /(z.#) have the form:

"’(fvﬂzRf?{V{f]eJ""} and ;'(z_f]:[{e{f(z)gﬁ”}

then these equations become:

F ;{:} — _(R+ jol)I(z)
ol(z) =—(6+ jol)V(z)
o0z

These equations are known as the telegrapher’'s equations |



e The functions I(z) and V(z) are complex, where the magnitude and phase of
the complex functions describe the magnitude and phase of the sinusoidal
time functione’®t.

e Thus, 1(z) and V(z) describe the current and voltage along the transmission
line, as a function as position z.

e Remember, not just any function I(z) and V(z) can exist on a transmission
line, but rather only those functions that satisfy the telegraphers equations.

The Transmission Line Wave Equation

We will combine the telegrapher equations to form one differential equation for
V (z) and another for | (2).

First, take the derivative with respect to z of the first telegrapher equation:

o JoViz)

=—(R+ "rJ.f.]ffz}L
fle 0z J! 7
2 .
G ,‘V[E‘ﬂ :_{E_l_ufmi}f,{{z}
iz 4

Note that the second telegrapher equation expresses the derivative of 1(z) in
terms of V(2):

ol (z)
0z

=—(6+ jol) V(z)

Combining these two equations, we get an equation involving V (z) only:
*V(z)

oz?¢

(R+ jol)&+ jol) V(z)
=y*V(z)

Where it is apparent that:



YV:=(R+ jolL)(G + joC)

In a similar manner (i.e., begin by taking the derivative of the second telegrapher
equation), we can derive the differential equation:

FI(z)
oz

We have decoupled the telegrapher’s equations, such that we now have two
equations involving one function only:

y:I(z)

32'/(2)_ 2
—z =1V(2)
3ZI(3)_ 2
Ty I(z)

Note only special functions satisfy these equations: if we take the double derivative
of the function, the result is the original function (to within a constant)!

Therefore, the general solution to these wave equations (and thus the telegrapher
equations) are:

Viz)= Ve + I, e*

I(z)=I1Ie7" + I;e"”
where Vo© Vo, lo", lo", and vy are complex constants.
It means that the functions V(z) and 1(z), describing the current and voltage at all
points z along a transmission line, can always be completely specified with just

four complex constants (Vo© ,Vo, lo*, lo).

We can alternatively write these solutions as:



V(z)=V"(2)+ V (2)

I(z)=I"(2)+ I (2)
where:

Vi(z)= Ke™ V-(z)= VW, e’
I*(z)= Ije™” I (z)=I; e

The two terms in each solution describe two waves propagating in the transmission
line, one wave (V * (2) or | * (z) ) propagating in one direction (+z) and the other
wave (V "~ (z) or | - (z) ) propagating in the opposite direction (-z).

o O

V(z)-Yerr T2

. Vi(z) =W e’
o o ~

Therefore, we call the differential equations introduced in this learning module the
transmission line wave equations.

The Characteristic Impedance of a Transmission Line

So, from the telegrapher’s differential equations, we know that the complex current
I(z) and voltage V (z) must have the form:

Viz)=V e + I e

I(z)=I e+ I e

Let’s insert the expression for V (z) into the first telegrapher’s equation, and see
what happens!



Therefore, rearranging, | (z) must be:

T — [te? T et = Y Ve — |/~ e*'?
(z) TeT+ I e R+J’m£(oe (~e™?)

For the above equation to be true for all z, o and Vo must be related as:

IG‘"E_?Z L L '{J"’e—fz ﬂnd Iﬂ—e-—yz L i L"E:I_E+rz
R+ jol R+ jol

Or—recalling that V" e ¥ 2 =V*(z) (etc.)—we can express this in terms of the
two propagating waves:

+ 1T Y + e N ' 4 s
I (z)—{—R+J_mL]V (2) and I (z)—{—R+J_mL]V (2)

Now, we note that since:

y=(R+ jol)(6 + joC)

We find that:

y ~ J(Q+J’ﬂ:£)(§+J’m€) 6+ joc
R+ jol R+ jaol R+ jaol




Thus, we come to the startling conclusion that:

V'(z) |R+ jal . -V (z) |R+ jaoL
I'(z) \6+ joC I(z) \6+ jaC

Note that although the magnitude and phase of each propagating wave is a function
of transmission line position z (e.g., V * (z) and I" (2)), the ratio of the voltage and
current of each wave is independent of position—a constant with respect to
position z.

Although V¢* and lo* are determined by boundary conditions (i.e., what’s
connected to either end of the transmission line), the ratio Vo* | ¢* is determined by
the parameters of the transmission line only (R, L, G, C).

This ratio is an important characteristic of a transmission line, called its
Characteristic Impedance Z,.

Z = v _ —l _ [R+ jolL
Iy I G+ jol
We can therefore describe the current and voltage along a transmission line as:

V(z)= e + I e’

+ -
I(z)= Vie""" - VLE*"‘"
ZD Z’D

or equivalently:

V(z)=Z,1}e” - Z,I; e**

I(z)=1I]e™ + I e™



Note that instead of characterizing a transmission line with real parameters R, G,
L, and C, we can (and typically do!) describe a transmission line using complex
parameters Zp and v .

The Complex Propagation Constant (y)

Recall that the current and voltage along a transmission line have the form:
Viz)=V"e” + I e~

Q o]

where Z, and y are complex constants that describe the properties of a transmission
line. Since vy is complex, we can consider both its real and imaginary components

y:J(Q+jmi)(§+J'm€)
ta+jp

Where a= Re {y } and p=Im {y }. Therefore, we can write:
e’? = gl atifz _ pmazpm Bz
Since e Pz =1, then e *Z alone determines the magnitude of e 2.
I.E., |e"’z| = & %7

A

—ar

e

\}

Therefore, o expresses the attenuation of the signal due to the loss in the
transmission line.



Since e™* is a real function, it expresses the magnitude of e™* only. The relative
phase ¢ (z) of e ¥2 is therefore determined by e “7Pz=¢ ~*Zonly (recall e /P2 =1).

From Euler’s equation:
e’’?) = e/’ = cos(fz)+ jsin(fz)

Therefore, Bz represents the relative phase ¢ (z) of the oscillating signal, as a
function of transmission line position z. Since phase ¢(z) is expressed in radians,
and z is distance (in meters), the value B must have units of :

B= o/ z radians/ meter

The wavelength A of the signal is the distance zA », over which the relative phase
changes by 2x radians. So:

2r = ¢(z + Az, )-¢4(z)=p Az, =pA

or, rearranging:
2
=7

Since the signal is oscillating in time at rate o rad /sec, the propagation velocity of
the wave is:

, @ ol £ ( m rad m
= — = = i =
B 2r .sec  sec rad

where f is frequency in cycles/sec.

Recall we originally considered the transmission line current and voltage as a

function of time and position (i.e. (z, t) and i (z, t)). We assumed the time function
was sinusoidal, oscillating with frequency o:

v(z.1) = Re (V(z)e/")

i(z,1) = Re I (z)e/")}



Now that we know V(z) and 1(z), we can write the original functions as:

v(z.1) = Re {bg*e‘“e‘”ﬁ"”’” + L'a‘e“ev“fﬁ“”’”}

+

f(z ?") = Re _.ba_. E_a‘?e—.}’-fﬁz—ﬂ‘f‘] _ _I’geazej(ﬁz+mr‘]
’ Z, zZ,

The first term in each equation describes a wave propagating in the +z direction,
while the second describes a wave propagating in the opposite (-z) direction.
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Each wave has wavelength:
. 2T
1 =%
Vij
And velocity:
—t @
F ){r}

Phase and group velocity of waves

To understand the difference between phase and group velocity of waves, consider
the following analogy. A group of people, say village gudlavalleru runners, start
from the starting at the same time. Initially it would appear that all of them are
running at the same speed. As time passes, group spreads out (disperses) simply
because each runner in the group is running with different speed. If you think of
phase velocity to be like the speed of an individual runner, then the group
velocity is the speed of the entire group as a whole. Obviously and most often,
individual runners can run faster than the group as a whole. To stretch this analogy,
we note that the phase velocity v, of waves are typically larger than the group



velocity vy of waves. However, this really depends on the properties of the
medium. The media in which vq = v, is called the non-dispersive medium. But the
media in which vy < v, is called normal dispersion. The media in which vy > v, is
called anomalous dispersive media. It must be emphasized that dispersion is a
property of the medium in which a wave travels. It is not the property of the waves
themselves. The relation between phase and group velocity is given by, vy= dw/dk
= Vp — A dvp /dA Generally, (k) is called the dispersion relation and indicates the
dispersion properties of a medium. As this formula predicts, if the phase velocity
does not depend on the wavelength of the propagating wave, then vy = v,.
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Figure 1.19: (left) A single travelling wave with frequency ® = 1. (right) A group
of waves composed of two waves with frequencies ® =1 and o = 1.1.

Briefly phase velocity refers to the velocity of a monochromatic wave, let’s say,
the velocity of one of the peaks of the wave. For example, a monochromatic wave
with angular frequency ® = 2xv (v is the frequency) travelling in +ve x-direction is
given by, y = A sin (ot — kx). On the other hand, group velocity refers to a group
composed of waves within a frequency band Aw. Group velocity is the velocity
with which the entire group of waves would travel. The following figure 1.19
shows y = sin (2 +t) and y = sin (2 +t) + sin(2 + 1.1t). The last form is the sum of
two waves whose frequencies differ by 0.1. Notice that the amplitude of the group
iIs modulated as a function of t. The example here shows the waves as a function of
t, but similar scenario holds good for waves as a function of x. For the travelling
wave shown in the left panel of the figure, phase velocity is the velocity with
which any one of the peaks progresses. However, for the right panel of the figure,
the speed of any of the peaks would give the group velocity.



Assignment-Cum-Tutorial Questions

A. Questions testing the remembering / understanding level of students

I) Objective Questions

1.

© 0 N o g bk~ w D

[ERY
o

A transmission line can be represented as
a) a circuit which contains R & L in series and G & C in shunt.
b) a circuit which contains R & G in series and L & C in shunt.
¢) a circuit which contains R & C in series and G & L in shunt.
d) none of these.
Give the shunt admittance of Transmission line.
Draw the approximate equivalent circuit of length Ax of a transmission line.

Primary constants of transmission line are

Secondary constants of transmission line are

Series Impedance of Transmission line is given by---------------

What is the input impedance of Infinite length Transmission line?

What is meant by Phase velocity of Transmission line?

What is the input impedance of transmission line terminated with its Characteristic

Impedance?

. Give the relation between series impedance, shunt admittance and Characteristic impedance

of Transmission line?

I1) Descriptive Questions

1.
2.
3.

What are the different types of Transmission lines? Explain.

Derive the Transmission line Equations.

Derive the input impedance and transmission line equations of Infinite length Transmission
line.

Show that the input impedance of transmission line terminated with Characteristic impedance
is equal to characteristic impedance.

Explain (i) Characteristic impedance (ii) Propagation Constant of Transmission line

Explain Wavelength, Phase Velocity and Group velocity of transmission line



B. Question testing the ability of students in applying the concepts.
1) 1. A generator of 1 volt,1000Hz,supplies power to 1000km long open wire line terminated in Z,
(characteristic impedance) and having following parameters:

R=10.4 ohms, L=0.0037 Henry, G=0.8 micromhos, C=0.00835 mfd.

Calculate the Phase velocity, Characteristic impedance, Propagation constant.
2. The primary constants of a line per loop Km are R=196 ohms, C=0.09 mfd, L=0.71Mh and leakage
conductance negligible. Calculate the characteristic impedance and the propagation constant of 5.00/2%
Hz.

3. A transmission line has the following constants
R=10.4 ohms, L=3.66 mH, C=0.00835 mfd, G=0.08microhms.
Calculate Zo, a, p and Vp at ® =5,000 radians per sec.

4. The parameters of the line are

R=650hms/km, L=1.6 mH/km, C=0.1uF/Km, G=2.25umho/Km

Calculate the characteristic impedance.
5. An open wire transmission line terminated in its characteristic impedance has the following
primary constants

R=6 ohms/km L=2 mH/km G=0.5 pQ/km C=0.005 p/loop km

Calculate the phase velocity and the attenuation in dB suffered by a signal in length of 200km.

6. A parallel wire line is made up of two copper conductors each of radius 1 mm separated by a distance
of 30 cm. in air. Conductivity of copper is 5.75X107 mho/meter. Calculate the d.c.
resistance, inductance and capacitance per kilometer of the line. Also calculate the a.c. resistance of the
line at frequency of 30 kHz.

)

1. The characteristic impedance of a certain line is 710L, -16° when the frequency is 1KHz. At this
frequency the attenuation is 0.01 neper per km and the phase function is 0.035 radians per km.
calculate the resistance, the leakage, the inductance and the capacitance per km and velocity of
propagation.

2. The characteristic impedance of a uniform transmission line is 2039.5 ohm at frequency of 800
HZ. At this frequency the propagation constant was found to be 0.054L‘ 87.9°.Determine the
values of line constants R, L, G and C.

3. Anopen wire telephone line has R= 10 ohm per km L=0.0037 henry per km, C=0.0083*10-°
farad per km and G=0.4*10"¢ ohms per km. Determine its Zo, o and  at 1000 HZ.

4. The constant of a L.F; transmission line per Km are R=6 ohms, L=2.2mH,c=0.005 pF ,
G=0.25micro mho. Calculate at the frequency of 1000Hz.(j)the terminating impedance for which
no reflection will be set up in the line.(ii)the attenuation in dB suffered by signal at 1000Hz,
while travelling a distance of 200Km when the line is properly terminated and the phase velocity
with which the signal would travel.

5. A telephone line has resistance of 20 ohms , inductance of 10 mH. Capacitance of 0.1uF , and
insulation resistance of 0.1 mega ohm/km. Find the input impedance at angular frequency of
5000 radian/sec., if the line is very long.



6. A 12km line is terminated by its characteristic impedance. At a certain frequency the voltage at
1km from the sending end it 10% below at the sending end. Find the voltage across the load
impedance in terms of percentage of the sending end voltage.



UNIT-I

TRANSMISSION LINES-I
Assignment-Cum-Tutorial Questions

SECTION-A

1.

no

RO NOO AW

12.

13.
14.

15.

A transmission line can be represented as [ ]
a) a circuit which contains R & L in series and G & C in shunt.

b) a circuit which contains R & G in series and L & C in shunt.

¢) a circuit which contains R & C in series and G & L in shunt.

d) none of these.

A practical transmission line has propagation constant equal to [ ]
A) a-jp B) af C) atjp D) o/jp

Primary constants of transmission line are .
Secondary constants of transmission line are
Series Impedance of Transmission line is given by
Give the shunt admittance of Transmission line.
Draw the approximate equivalent circuit of length Az of a transmission line.

What is the input impedance of Infinite length Transmission line?

What is meant by Phase velocity of Transmission line?

. What is the input impedance of transmission line terminated with its Characteristic

Impedance?

. Give the relation between series impedance, shunt admittance and Characteristic

impedance of Transmission line?

If the load impedance of a transmission line is 200 ohms and its characteristic impedance
is 200 ohms, find out the input impedance?

Write the equations for solutions of transmission lines.

The parameters of the line are R=650hms/km, L=1.6 mH/km, C=0.1uF/Km,
G=2.25umho/Km, Calculate the characteristic impedance.

The lossless transmission line satisfies the following condition(s) [ ]

R=0  b)G=0 R=0andG=0 d)r=72

SECTION-B
Descriptive Questions

1.
2.
3.

What are the different types of Transmission lines? Explain.[C01]

Derive the Transmission line Equations. [C01]

Derive the input impedance and transmission line equations of Infinite length Transmission
line. [CO2]

Derive the solutions of transmission line equations terminated with any load impedance.
[CO1]

Show that the input impedance of transmission line terminated with Characteristic
impedance is equal to characteristic impedance. [C01]

Explain (i) Characteristic impedance (ii) Propagation Constant of Transmission line. [C01]
Explain Wavelength, Phase Velocity and Group velocity of transmission line. [CO1]



8. Derive the expression for input impedance of a transmission line terminated with any load
impedance other than characteristic impedance. [CO02]
Problems

1.

The primary constants of a line per loop Km are R=196 ohms, C=0.09 mfd, L=0.71Mh
and leakage conductance negligible. Calculate the characteristic impedance and the
propagation constant of 5.00/2w Hz. [C02]

2. A transmission line has the following constants. R=10.4 ohms, L=3.66 mH, C=0.00835
mfd, G=0.08microhms. Calculate Zo, a,  and V; at ® =5,000 radians per sec. [C02]

3. The series inductance and shunt capacitance of a general transmission line are given as
2 mH/km and 0.005 pF/km respectively. However, series resistance and shunt
conductance of this transmission line R = G = 0. Calculate the characteristic impedance.
[CO01]

4. The characteristic impedance of a uniform transmission line is 2039.5 ohm at frequency
of 800 HZ. At this frequency the propagation constant was found to be
0.054/487.9°.Determine the values of line constants R, L, G and C. [C01]

5. An open wire telephone line has R= 10 ohm per km L=0.0037 henry per km,
C=0.0083*10¢ farad per km and G=0.4*10"° ohms per km. Determine its Zo, o and 3 at
1000 HZ. [C02]

6. At 8 MHz the characteristic impedance of a transmission line is 40-j2 ohms and the
propagation constant is 0.01+j0.018 per meter. Find the primary constants. [C01]

7. A telephone line has resistance of 20 ohms , inductance of 10 mH. Capacitance of 0.1uF
and insulation resistance of 0.1 mega ohm/km. Find the input impedance at angular
frequency of 5000 radian/sec., if the line is very long. [CO1]

8. An open wire transmission line terminated in characteristic impedance has the following
primary constants at 2 KHz, R=12 Q/km, L= 4 mH/km, C=0.005 pf/km, G=1pumho/km.
Calculate the phase velocity and the attenuation in dB suffered by a signal in a length of
200km.[1nep=8.686 dB] [C02]

SECTION-C

1. The following are the Secondary constants of a transmission line [ ]

A) o, B, A f B)R,L,C,G C)y, Zo D) po, €0

2. Propagation constant of a transmission line = [ ]

; ; (R+jwL) L w

A) /(R + jwL)(G + jwC) B) ) C) \E D)E

3. Phase velocity of a transmission line = [ ]

; ; (R+jwL) L w
A) /(R + jwL)(G + jwC) B) ) C) \E D)E
4. Microstrip lines are used in [ ]



B) PCBs B) filters C) vacuum tubes D) none



Transmission lines and Waveguides(UNIT I1)

A. Questions testing the remembrance/understanding level of students

I. Objective/Multiple choice questions

. Eighth-wave line transforms any resistance to impedance with a magnitude equal to
of the line

wave line acts as impedance transformer or inverter.

. An open circuited line with length < A/4 is equivalent to

. An open circuited A/4 line is equivalent to circuit.

. An loen circuited line with length > A/4 is equivalent to an

. The impedance of a quarter wave line along its length is pure

. The dependence of attenuation on frequency causes

. Different phase delays of different components cause

. To avoid delay distortion, the condition to be satisfied is

10. Distortion-less condition is

11. Loading is addition of to achieve condition.

12. Load matching refers to termination of line with

[

I1. Descriptive questions
1. Derive arelation for RC over the load.
2. Derive the inter relations between RC and line impedance
3. Derive the values of SWR for different types of terminations.
4. Derive an expression for the input impedance of a loss-less line which it is terminated by
(a) a load Z, (b) open (c) short circuit and draw the suitable sketches.

B. Questions testing the ability of students in applying the concepts
I. Multiple choice questions
1. The distortion-less line condition is

a. a) R/L=G/C b) R/L>G/C
b. ¢) R/L<G/C d) None of these
2. The loading of line refers to the connection of
a. (a)Inductive coils b) Capacitive boxes
b. (b)Both (a) and (b) d) None of these
3. The input impedance of quarter wave, A/4 transformer is
a. a) Terminal impedance b) Terminal admittance
b. c¢) Characteristic impedance d) None of these
4. The input impedance of half-wave line i.e. 4/2 transformer is
a. a) Terminal impedance b) terminal admittance
b. c¢) Characteristic impedance d) None of these
5. The reflection coefficient right over the source is
(Z,-Z,) (Z,+2,)
a. (a) (ZS +Z°) (b) (Zs 'Zo)
b. (c) M (d) None of these
(Z,+2,)



The SWR is meaningful for
a. a) Lossy lines b) loss-less lines
b. ¢) Both (a) and (b) d) None of these

The SWR can be found from
a. a) Magnitude of RC b) Phase of RC
b. ¢) Both (a) and (b) d) None of these

The SWR is
a. a) Constant of line and load b) varies over the line
b. ¢) Both (a) and (b) d) None of these

The range of SWR is
a. a) —1to 1 through 0 b) +1 to infinity
b. ¢) 0to infinity d) None of these

10. The SWR for sc or oc terminated line is
a. a) Zero b) one
b. c) Infinity d) None of these
Il. Problems

1.

1.

Determine the primary constants, R, L, G, and C for a distortion-less line working at
300MHz. Given that the line has characteristic impedance, Z, =75Q, attenuation
constant, a=0.12Np/m, and wave velocity, v=1.4x10%m/s.

Answers: 9.0 Q/m, 5.356x10'H/m, 16x10™* U/m, 95.22pF/m.

A loss-less 200Q line is terminated on a load given by (200—j200)Q2. Given that the
propagation constant is (0.040+j2.25)/m. Find reflection and transmission coefficients at
load.

Answers: 0.447,-1.107, 1.2624-0.32.

A loss-less 50Q line is terminated on a load given by 100Q. The magnitude of voltage in
incident wave is 20V(rms).  Determine SWR, maximum voltage and currents as well
minimum voltage and currents over the line.

Answers: 2, 37.71V, 754.24mA, 18.85V,377.12mA

A loss-less 75Q line is terminated over a load with impedance (120+]80)Q. (a)Find RC,
I' and SWR p. (b) Also work out how far from load the line impedance is pure real.
Answers: (a) 0.43520.67, 2.54 (b) 0.053%

A 150Q loss-less line connects a signal of 1GHz to a load of 200Q. The load power is
100mW. Evaluate (a) voltage RC, (b) VSWR (c) incident and reflected powers and (d)
positions of Vmax, Imax » Vmin and Imin .

Answers: (a) 1/7 (b) 4/3 (c) 102.08mW, 2.08mW (d) Vmax and Inin right over load, Vmin
and Imax at a distance of 7.5cm from load.

A loss-less 75Q line, 5A/8 in length, is terminated on a load Z;. Find out its input
impedance Zi,when (a) Z=j45Q (b) Z= 25-j65Q.

Answers: (a) j300Q (b) (13.90+j2.87) Q.

Determine the input impedance of a short circuited 50Q coaxial line with £ = 8.5rad/m
when line length is (a)15cm(b)1.5m(c)3A/4 and (d)A/8.

Answers: (a) j164.08Q, (b) j9.29Q, (c) j20.93kQ, (d) j50Q

C. Questions testing the Analyzing/evaluating/creative abilities of student
Differentiate SWR from RC.



2. Analyze and derive an expression for voltage and current of SWR over the line.

3. What is distortion-less condition? Derive the relation for distortion-less line condition on
the primary constants.

4. What is loading ? Discuss different types of loading methods mentioning their relative
merits and demerits.

5. What are properties and applications of eighth wave line, quarter wave line and half wave
line? Given a list of their applications.

D. Previous GATE/IES questions
1. A transmission line with a characteristic impedance of 100€Q is used to match a 50
Q section to a 200 Q section. If the matching is to be done both at 429MHz and 1GHz, the
length of the transmission line can be approximately(GATE2012)
(A)825cm (B)1.05m (C) 1.58m (D) 1.75m AnsC
2. A transmission line of characteristic impedance 50€2 is terminated in a load impedance
Z,. The VSWR of the line is measured as 5 and the first of the voltage maxima in the line is
observed at a distance of A/ 4from the load. The value of Z; is (GATE2011)
(A) 10 (B) 250 (C) (19.23 + j46.15) (D) (19.23 - j46.15) Ans B



LINE DISTORTION

The deviation of the signal waveform at the output of the line from that at its input
terminals is called line distortion. It is due to the fact that all frequencies in the waveform do not
have same attenuation and same delay during the propagation. The characteristic impedance,
attenuation and velocity of propagation on the line, by being functions of frequency are all
causes of this deformation. The total deviation of the waveform from its originality is considered
as sum of two components, namely, frequency distortion and delay distortion.

Frequency distortion is due to various frequency components of the signal undergoing
different amounts of attenuation when the attenuation constant « is function of frequency. To
eliminate this distortion the attenuation constant « must be made independent of frequency.

Phase or delay distortion is due to different frequency components of the signal
undergoing different amounts of phase delays while reaching the destination, thus spoiling the
original phase relation among them. To eliminate this, phase shift constant f must be made
proportional to angular frequency w.

Equalizers : Frequency distortion can be reduced by cascading lines with networks known as
‘equalizers'. Equalizer is a network whose attenuation versus frequency characteristic is just
opposite to that of the line. Delay distortion can also be reduced with equalizers, but it must be
designed in such a way that g for total circuit is proportional to w. For audio transmission, only
frequency distortion is serious problem whereas for video transmission both, frequency as well
as phase distortions, cause severe trouble.
Distortion-less line : By definition, distortion-less line is one which transmits the input signal
without any distortion. It can be found that a line becomes distortion-free when its primary
constants are related by,

R_G Lcr=LG (15.1)

L C
This mathematical condition for distortion-free transmission is known as Heaviside Condition as
it was derived by Oliver Heaviside first time in 1887.
Proof: For the line to have neither frequency nor delay distortion, its attenuation constant and
velocity of propagation should be independent of frequency.

As the propagation velocity is given by, v=w/f, for it to become frequency independent,
the phase shift constant, available in Eq.(13.25), must be a direct function of frequency. It can
happen only when the second radical is equal to (RG+w?LC). Enforcing this condition, it can be
obtained that,

(LG—CR)zO—)CR: LG
Then, the phase shift constant becomes,

B Z\/%[(COZLC—RG)+\/(R2 +?1?)(G? +0)2C2)J
—ovLC (15.2)

which is proportional to angular frequency, @ making the propagation velocity independent of
frequency, thus eliminating delay distortion. The propagation velocity, for this case, becomes,

©__ 9 ! (15.3)
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One can also be observed that, when the second radical is equal to (RG+w?LC), the expression
for attenuation constant, available in Eq.(13.24), becomes frequency independent. Enforcing this
condition on the radical gives,

(LG—CR)zO—)CR: LG
With this incorporated, the attenuation constant becomes independent of the frequency, given by

a= \/%[(RG —coZLC)+\/(R2 +0’L?)(G? +w2C2)J

=+RG (15.4)
In addition to v, § and a, it is also instructive to consider the expression of characteristic
impedance for distortion-less line. Incorporating Eq.(15.1) into it, results in,

R+ joL L(R/L+ j
Z, = ( +j-60): (/ +J-CU) :\/E (15.5)
(G+joC) \C(G/C+ jow) C
In Table 15.1, the relation between distortion-less line and loss-less line is summarized.
Consider the products aZ,, o/Z,, Zo/v and 1/Z,v giving R, G, L and C, respectively. These

relations, thus, suggest a way by which one can determine the primary constants of a distortion-
less line, when attenuation constant, characteristic impedance and phase velocity are given.

Loading: In actual lines, the primary constants are such that R/L>>G/C, because of lower values
of G. To make the line distortion-less by enforcing Eq.(15.1), the usual practice is to decrease
R/L instead of going for the increase of G/C for reasons, like increase in G leads to increase in
losses and inefficient operation etc. The decrease in R/L is achieved, usually, by increasing the
inductance, L instead of going for a decrease in R as it requires large conductors, large copper
and hence, it is costly to go for a reduction in R. Increase in L is affected either by changing the
line configuration or by connecting highly inductive coils to the line. The method of increasing
the series inductance of line using inductive coils is called 'loading'.

Table 1 Distortion-less line versus loss-less line.

S.No. | Properties Distortion-less line Loss-less line
1. | Primary constants (R/L) = (G/C) R=G=0
2. | Characteristic impedance z =JL/C Z =JL/C
3. | Attenuation constant a =+/RG a=0
4. | Phase shift constant B =w\LC B =w\LC
5. | Wave velocity over line Vzl/\/ﬁ Vzl/\/ﬁ

Loading coils are traditionally known as Pupin coils after Mihajlo Idvorski Pupin (1858 —
1935), a Serbian American physicist and physical chemist, and the process of inserting them is
sometimes called pupinization. The concept of loading coils was a discovery of Oliver
Heaviside in the 1860s. He found that added inductance was essential to avoid attenuation and
time delay distortion of the transmitted signal.

Permalloy and Mu-metal are two alloys widely used in the design of loading coils. The
first one is a magnetic nickel-iron annealed alloy with higher magnetic permeability is a
discovery of Gustav EImen in 1914. The second one, Mu-metal, invented in 1923 by a telegraph



company in London, has magnetic properties similar to permalloy, but it has increased ductility
with the addition of copper and allows the metal to be drawn into wire. Compared to permalloy,
Mu-metal cable is easier to construct, and also its construction lends itself to a variable loading
profile. Loading is of three types: lumped loading, continuous and patch loading and all are
described briefly below.

Lumped loading: In this method, as shown in Figure 1(a), relativiely high inductance coils are
introduced at definite and uniform intervals along the length of the line to increase its inductance.
In earlier days, the loading coils used to be two windings on a iron dust or permalloy dust cores.
Presently, however, molybdenum permalloy dust cores are being used, as they give high
inductance with a rather small coil. It was Heaviside who first made the proposal, in 1893, of
using discrete inductors at intervals along the line.
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Figure 1 Loading methods. (a) Lumped loading and (b) continuous loading.
Continuous loading: The introduction of heavy loading coils in submarine telephone and
telegraph cables can subject them to undue strain at the points of insertion. To avoid this issue,
continuous loading, as shown in Figure 1(b), is used. The tape of steel or some other magnetic
materials, such as 'perm alloy' or 'mumetal’ is wrapped around the conductor to be loaded. As
such loading distributes the inductance continuously along the line, it causes the line to behave
like one with distributed constant. It increases the permeability, « of the surrounding medium and
thereby increasing the inductance. It is costly, and hence, used in sub-marine cables only.
Patch loading: Lumped loading is cheaper but it suffers with the drawbacks of a definite cutoff
frequency and difficult seals. Continuous loading, on the other hand, is expensive and hence can
be done only when it is absolutely necessary. A compromise method is patch loading, whereby
the cable is continuously loaded in repeated sections, leaving the intervening sections unloaded.

Negative side of loading coils is that they cause distortion to higher frequencies,
associated with digital signals, and hence, their presence in the line is not conducive for high
speed data transmission. They are, however, highly useful to boost analog voice frequencies and
are usually placed in local loops longer than 18,000 ft. In the current era, coils are hardly being
used as they are superseded by higher technologies.



REFLECTION COEFFICIENT

To define RC, consider a line connected to a sinusoidal source and terminated over an
arbitrary impedance. In the steady state, it can be found the existence of two waves over the line:
one travelling towards the load, incident wave and the other towards the source, reflected wave.
Each one these two waves is associated with voltage as well current. In general, the magnitude
of the incident wave depends upon the source-line matching at the input end and that of the
reflected wave depends upon the load-line matching at the termination end.
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Figure 2 Defining Reflection Coefficient and Transmission Coefficient over a line.
With respect to this line, the vector ratio of voltage of in the reflected wave, V. to that in the
incident wave, Vinc at an arbitrary point over the line is defined as Reflection Coefficient (RC) at
that point and is usually denoted by I' (Gamma). Mathematically,

rs \\ifef - T=[r= |V—f| & LT=4LV, -2V,
inc inc
As the voltages Vet and Vinc are phasors, they are complex, and hence, their ratio, the RC is a
complex quantity, denoted by bold face Greek letter, I" and it’s magnitude by light face letter i.c.,
=T

It can be easily shown that the ratio of currents in reflected and incident waves is equal to the
negative of ratio of voltages of those waves. Accordingly, one can define the RC in terms of
currents ratio also: the negative of ratio of current of the reflected wave to that of the incident
wave. Mathematically,

V |

A Tref
\/inc Iinc

For any passive line, the voltage amplitude in the reflected wave can never be more than
that of the incidence wave, reflected wave is part of incident wave. Accordingly, the magnitude
of the RC can never be more than one, always in between 0 and 1. In general, RC varies from
point to point over the line and its range is from '-1' to 1" through '0". In case of loss-less lines,
however, the magnitude of RC remains same over the entire line. For this type of lines, as the
magnitudes of the voltages, Vs and Vi, remain constant, the magnitude of RC which is their
ratio, also remains same at all points over the line.

ref

The magnitude of the RC over the load depends upon the terminating impedance. When
the load is matched i.e. load impedance is equal to characteristic impedance, no reflected wave
exists, and hence, the magnitude of RC becomes zero. For non-dissipative loads, like open



circuit, short circuit and pure reactances, the incident wave gets reflected completely, and hence,
it becomes equal to one. For other types of loads, the magnitude lies in between 0 and 1.

The phase of the RC is the difference of phases of reflected wave and incident waves. As
these phases vary form point to point over the line, the phase of RC also changes accordingly, as
shown in the Figure 14.1. Consider the location of Vax. Maximum occurs when reflected and
incident waves are in phase, leading to phase of RC there as zero, and hence, it may be
considered as phase reference. When points towards source are considered, the phase is negative
and keep on increasing, reaching —m at next minimum, —27 at next maximum, -37 at next
minimum and so on so forth. When points towards load are considered, the phase is positive and
keep on increasing, reaching © at next minimum, 27 at next maximum, 37 at next minimum and
so on so forth.

+ve | —ve
v 5 (—O——}{———}
Vol f=—4x f=—21 g= max 8=0 + 8=0
ezl =— 47 =— L] =0 =
\/"\\
Ve I:: :: Ve _ .
8=_51 8=_371 =1 =+ g=tm =t
(@) Along the line )] Along the line

Figure 3 Phase of RC, 6 at Viax and Vmin over loss-less line. (a) Actual phase and (b)
effective phase.

Now, if a Vmax IS considered, there the phase is 0, left side it is negative falling to —m at the next
Vmin, right side it is positive increasing to m at the next Vmin. NOw, if @ Vin IS considered, there
the phase is +m, left side it is positive decreasing to 0 at the next Vmax, right side it is negative
increasing to 0 at the next Vpax.

In the standing wave pattern, the coefficient assumes pure real values at maxima and
minima points. It is positive at voltage maxima(or current minima) and negative at minima (or
current maxima) points of the pattern. Maxima occur due to constructive interference at points
where reflected and incident waves differ in phase by —-2(k-1)z and minima occur due to
destructive interference at points where reflected and incident waves differ in phase by — (2k-
1)z, here k is integer i.e., k=1,2,3,.. etc. In either case, from the definition, one can see that the
RC is pure real there.

Another parameter related to RC is transmission coefficient. When line is terminated on
a mismatched load, the power incident over the load goes into it only partly, the remaining being
reflected back. Transmission coefficient denotes the power flow into the load. By definition it is
given by

_ Transmitted voltage or current V, |,

Incident voltage or current V. |

inc inc

The transmission and reflection coefficients over the load are related through,
T=1+T,
The incident wave plus reflected wave gives the transmitted wave at the load. Hence,

Vv, e Vvie™
— =1+— "
Ve Ve

Ve’ +ve' =V,.e" — — T=1+T,



The reflection coefficient over load, I'j is related to load impedance, and hence, transmission
coefficient also can be expressed in terms of load impedance.

| = £ =2, —-T=1+T, = 22,
Z +Z, Z+Z,
The connecting relation between transmission and RCs is,
T? =5(1—r,2)

0

The powers carried by incident, reflected and transmitted waves, respectively, are,

(Vie™)? (V') g MVuf) e")’
2z, = 2Z, 2Z,
The difference of incident and reflected powers, naturally is transmitted power. Hence,
+4-71\2 -A71\2 v1\2
27, 27, 27, o

In the above two relations, notice that transmission coefficient becoming 1 when load is matched
l.e. Z; = Z, , indicating complete transmission into load. The RC at an arbitrary point over a
uniform line can be expressed in terms of receiving end impedance, Z, or sending end
impedance, Z;. The procedures for the derivation of these relations are given below.

Example Find voltage and current RCs and also characteristic impedance of a uniform line
having incident wave voltage and currents as 50£0.50V and 0.6672£0.35A and those on reflected
wave as 10£0.65V and 0.1332—2.64A

Also mention whether the line is loss-less or lossy.

Solution:
Voltage RC is,
\V/ - I
o Ve _ 10.£0.65 02015 0.133£-2.64 _ L
V. 50-0.50 0.667.20.35 I

inc inc

Current RC is found as, —0.220.15V. It is verified that current RC is ratio of current in reflected
wave to current in incident wave, also negative of voltage RC. The characteristic impedance is,

Z, = Vie . 802050 _ 7 15 Ve
l,. 0.667.£0.35

Characteristic impedance is found as 75215V. It is verified that characteristic impedance is equal

to negative of ratio of voltage to current ratio in the reflected wave.

Example A 75Q loss-less line has a voltage of 6020.2V in its forward wave. The RC is found

asl« 0.3 at that point. Find voltage and currents of the total wave.

Solution:

Voltage in the reverse wave is

V=TIV, =170.3x60£0.2=60£0.5V

ref inc
Current in the forward wave is

Ve 802026 00n
zZ, 7520

0

Current in the reverse wave is

ref




|, =TI =-1/0.3x0.8/0.2=0.8/—2.642A

Total voltage is sum of voltages in incident and reflected waves, and hence,
V=V _+V_ =60£0.2+60,0.5=118.65,0.35V

inc ref
Total current is sum of currents in incident and reflected waves, and hence,
I=1.+1,=08£02+08£-2.642=0.24/-1.22A
Example A (50+j0.2)Q line is terminated on a load of impedance (a) (75+j50)Q and (b)
(75-J50)Q2. Determine RC and transmission coefficient over load.
Solution:
(a) Z=(75+j50)Q2:: The RC and transmission coefficients over load are
_Z-Z, 75+ 1:50—50— 1:0.2 0414072
Z+Z, 75+ )50+50+ j0.2
2z, 2(75+ j50)
~Z,+Z, 75+ j50+50+ j0.2
As cross check,
1+T, =1+0.41420.72=1.3420.206 =T
(b) Zi= (75-j50)Q2 :: The RC and transmission coefficients over load are
r,=£=2 150702002 4417, 073
Z+Z, 75-)50+50+ jO.2
2z 2(75- j50)
~ Z,+Z, 75— j50+50+ j0.2
As cross check,
1+T, =1+0.417£-0.73=1.34/-0.21=T

=1.3420.206

=134,-0.21

Reflection Coefficient-Receiving end impedance

Consider voltage and currents at a point P located at a distance of d from the receiving end over
a line, terminated over an impedance Z, , carrying a current I, with a voltage V, across, leading
toVi=V,, I, =land Z, = Z; in EqQ. (13.51). Recognizing the first term as incident wave and the
second term as reflected wave, one can write that the RC at the point, P as,

Vref _ (Zr _Zo)eiyd _ (Zr _Zo)
\/inc - (ZI’ +Zo)eyd - (Zr +ZO)
These voltage and currents can be expressed in terms of this RC as,

V=(Z4Z)eR(14T) & 1=i(Z,42Z,)e" (L-T)

—2vyd
e v

0

Right over the load, d =0 and Z, = Z, and hence, the RC exactly over the load, I'}, becomes

_ (ZI _Zo) —2v0 _ (ZI _Zo)
")’ @) o

T= |rl| 2R+ i(6,-28d)

# _(zs_za]
T d—| 7 g7z,

Sending end H Load end
>

i
s




Figure 4 RC at load end and at an arbitrary point.
As T is a complex quantity, it can be written in terms of its magnitude, |I'j| and phase, 6, as,

r =T [e"
The T’y can also be expressed in terms of the normalized load impedance as,
_Z,(2,/Z,-1) _(z-))

' Z2,(Z,/2,+1) (z,+1)
Here z, is normalized load impedance. It is also possible to express the RC at a point P in terms
of its value at load, as follows:

= (ZI - Zo) e—Zyd — I—wle—Zyd
(2+2,)
Substitution of T’y from Eq. (14.10) and y= a + jf in the above relation results in,
r=|1“,|e"9' g 2a+ip)d =|F|| e—ZadJrj(@'—Zﬂd)

Hence, the RC I at a distance of d from the load end, is T'=Te?? with a magnitude, I'= [
e and with a phase of (6, —254).

Note that one can obtain the same result using expressions for current, available in
Eq.(13.51b). In case of loss-less line, the RC everywhere has the same magnitude including over
the load. In case of lossy line, the reflected wave becomes smaller and the incident wave larger
with increasing distance from the load causing |I'| to decrease accordingly. Salient features and
relations pertaining to RC are illustrated in Figure 14.3.

R eflection coefficient

erzvw_ Lo
“z’m ]—Tm

o In general complex

s Range'-1"to'1".

Phase )
ZT —»zero at voltage maxima

—n at voltage nmunima

P =0 for matched loads
=1 for open, short and pure reactive loads
=0to =1 for dissipative loads

Magnitude ’-

At woltage mazima At woltage minima
o Pure real and positive  ePure real and negative

| ) i ]
-Z,) 1 (Z,-Z,)

(Z :
* 5=(Z +Z] .r3=(z +zﬁ'}
14T e T=Te™ =T (14T
.zs: zo : .Z.!:zo !
(I-T,) (1-T;)

Figure 5 Illustrating the salient features of RC.
Another aspect, to be considered here, is that regarding the relation between the total voltage and
currents with the voltages of the incident and reflected waves at the load end, through load RC.
These relations are given by

o v, _(\+1,Z,) & vV _LYV, :(V,—I,ZO)
melload 74, 2 “load 14T, 2




Derivation: Consider the total voltage across the load, which is sum of the voltages in the
incident and reflected waves, and in terms of I'} it can be expressed as,

\/| = \/i”0|load + Vref load = Vin0|load (1+ rl)
Rearranging the above relation results in,
VI

V.
inc |Ioad (1+ FI )

Substituting the expression for I’y available in Eq. (14.10) in the above expression, one can
obtain,

- - M - 2z
V= \/inC|Ioad (1+F,) - Vi”°|'°ad {14‘ (ZI + ZO) - Vin°|'°ad (ZI + ZO)

Thus, one can have incident voltage at load in terms of load voltage and currents as,

Z+Z VZ +VZ VvV, +1Z
\VA =V | o |— 1= 170 | _ | 10
ol '[ 27, j [ 27, j ( 2 J

This completes the proof for first part of Eq.(14.13). By noting that reflected wave voltage is
product of incident wave voltage with RC and following a procedure which is similar to the
above, one can easily obtain the relation available in second part

Reflection Coefficient- Sending end impedance

Consider the expression for voltage and currents, at a point, P located at a distance of x from the
sending end over the line. Recognizing the first term as incident wave and the second term as
reflected wave, one can write the RC at the point, P is

Vref _ (Zs_zo)eyx _(Zs_zo)
Ve (Z,+Z,)e™ (Z,+Z,)
The voltage and currents over the line can be expressed in terms of this RC as,

V=(Z,42,)eT(14T) & 1=o2(Z,42,)e " (1-T)

= 29X

0

T= |:['j |9]“"9"{ﬂ’ )
- -

B——
_(2,-2,) p— |
' {zl+zo)
Senfng end Load end

€ ! >

Figure 14.4 Reflection coefficient at sending end and at an arbitrary point.
At the sending end i.e. exactly over the source, x = 0 and the RC becomes,

— (Zs — ZO)
at x=0 (ZS + ZO)
As T is a complex quantity and can have both magnitude, |I's| as well as phase, ;. Hence,

r,=Tr



I, =|r|e"
The RC at the source end can also be expressed in terms of the normalized load impedance.
_Z, (ZS/Z0 —1) _ (zS —1)
Y Z,(2,)Z,+1) (z,+1)

T =|r |é,2mx€.f[ﬂ,+2ﬁl’:' T= |I‘;|g‘2“"*’+-?[5—2,ﬁa‘)
- 5

= ]
N S
*(Z,+Z
B { 5—25-5 cﬂ} . —r Qzﬁ
=Tw™" Sending end Load end

l |

€ {

Figure 14.5 Inter-relation between RCs at different points over the line.
Then, RC at the point, P in terms of I's becomes

(ZS _Z ) Zyx =T e
(Z,+Z )
Substitution of I's from Eq.(14.16) and y=a + jf# in Eq. (14.18a) results in,
—|F |e19 2a+1ﬁ |F |e2ax 19+2ﬁx)

STANDING WAVE RATIO

The Standing Wave Ratio, or SWR, is one of the most important parameters used to
describe, and also to quantify standing wave pattern over a loss-less line. It gives an indication
of the amount of mismatch or reflected wave over the line. Note that this parameter is relevant
only for loss-less lines.

SWR is defined as the ratio of maximum to minimum voltage in a standing wave pattern
over a loss-less line. It can also be defined as the ratio of maximum to minimum current in
standing wave pattern .However, it can be found that both are equal. SWR is denoted by 'p'(rho)
and is always a dimensionless, pure real quantity, with value ranging from one to infinity.
Mathematically, it can be defined as,

o Ve _ Vo]
|

|v

min |

max |

min |

V Palage L nad i : Load
I Ceirrent

|‘¢"‘.,| I -/-j_ T - [
/| 1} F— s == = — =
\ ¢ P-n.n | -‘._\- f'?_\\ fl?_ "
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-
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Figure 7 Definition of SWR. (a) VVoltage waveform and (b) current waveform.



SWR can be considered as an indication/measure of amplitude ratio of reflected to incident
waves. Thus, a value of unity for SWR denotes the absence of a reflected wave, while a very
high SWR indicates that the reflected wave is as large as the incident wave. The SWR, can be
shown, as infinite when the termination is open- or short-circuit or non-dissipative pure
reactance.

0.9 T T T T T T T T
08 - =

0.7 F ]
0.6 | 5
05 - E
0.4 N
03 .
02 =1
0.1 = -

0.0 1 L i ] L 1 ]
1 2 3 4 5 6 7 8 9 10

p—>
Figure 8 Relation between SWR and magnitude of RC.
SWR s related to RC and, in fact, it can be considered as a means of expressing the magnitude
of the RC, T" when the line is loss-less. The exact analytical relation between the two can be
specified either by expressing SWR in terms of T as,
1+ |F| _1+T

P 1-r| 1-T

Or by expressing I" in terms of SWR as,

[r|

—

r=|r|= p-1
p+1
Proof: SWR, by definition is ratio of [Vimax| to [Vmin|. But voltage maximum occurs when
incident and reflected waves interfere constructively, and hence, there the amplitude of the wave
is sum of incident and reflected ones i.e. |Vmax|=|Vinc [+|Vret | . The voltage minimum occurs when
incident and reflected waves interfere destructively, and hence, there the amplitude of the wave
is difference of incident and reflected ones i.e. |Vmin|=|Vinc |[-|Vrer |. Introducing these two aspects
in the defining relation,

_ |Vmax| _ |Vinc|+ Vref 1+ Vref /|Vinc| _ 1+|r| _ 1+F
|Vmin| |Vinc|_ Vref 1- Vref /|Vinc| 1_|r| 1-T
The above relation can easily be manipulated to get that
(1-T)p=(1+T) > (p-1)=T(p+1)
(p-1)
(p+1)
Note that, from the value of the RC, it is possible to find SWR. However, from SWR, it is
possible to find only the magnitude of RC but not its phase.




SWR for different loads
The SWR assumes values depending upon the load. Its values for different types of loads are
shown in Table 14.2. The necessary proofs are given hereunder.
Table 14.2 Values of SWR for various types of loads.

S.No. Type of Load SWR
1. Matched termination One (1)
2. Open circuit or short circuit or pure Infinity(co)
reactance y
3. _ max(Z,,Z,)
Pure resistance P=——"5 S~
min(Z,,Z,)
4. S 1+ |2,-Z,)
omplex impedance p -1’ |Z| _Zo|

e When the termination is matched i.e. Z, = Z, , the SWR assumes a value equal to one.

Proof:

When the termination is matched(load matching is discussed completely in chapter 15), total
power of the incident wave goes into the load, and as a result, the reflected wave becomes nil.
As a consequence, only forward traveling wave exists over the line and as it is loss less, the
amplitudes of the oscillations at all points over the line remain same. Hence, there exists no
maxima points or minima points over the line, making |Vmax|=|Vmin|, resulting in SWR of unity.

e \When the termination is pure reactance or open circuit or short circuit, the SWR is infinity.
Proof:

When the termination is one of the three categories i.e. pure reactance or open circuit or short
circuit, then load can absorb no power from the incident wave. Thus, the entire incident wave
gets reflected, the reflected wave is as strong as the incident wave. As the amplitudes of the
incident and reflected waves are same, perfect cancellation takes place at the points of minima,
making the minimum voltage Vmin=0, resulting in an SWR of infinity.

e When the termination is pure resistance i.e. Z; = R,, then the SWR is either Z,/R, or R, /Z, ,
which ever is more than one.

Proof:
The SWR is related to the magnitude of the RC through,
_ 141
SR

Even though the RC varies from point to point over the line, its magnitude remains same over the
entire line, including the load point, provided the line is loss-less. Hence,

ZI _Zo
Z+Z,
In the present case, where the line is loss less, the characteristic impedance Z, is real and as line

is terminated over a pure resistance, the load Z, is also a real quantity. In addition, these two are
positive quantities and under such circumstances,

Z2,-2,|=2,-2,if Z,>Z,

[r]=|r|=




=Z,-Z2 ifZ,>Z,
1Z,+2,|=2,+Z,
Substituting these values into the expression for SWR results in
140 1+|r| |Z,+Z,|+|Z,-Z,]
- 1-|r| |z, +Z,|-|Z,-Z,|
Firstly, consider the case in which Z, > Z ::
_ |ZI +ZO|+|ZI _ZO| L +Z,+Z2,-Z, Z
Pz vz |-z,-2,| z+2,-2,+2, Z,

0 0

Next, consider the situation where Z > Z,::

_|Z| +ZO|+|Z|_ZO| _ ZI+Zo+Zo_ZI _Z_
p_|z,+zo|—|z,—zo| - Z,+Z2,-Z,+Z, Z,

Thus, the SWR is Z,/R, (for Z,> Z,) or R, /Z, (for Z,< Z;). In other words, SWR is one of these
two ratios, whichever is more than one, and hence, mathematically, it can be expressed as,
max(Z,,Z,)
p min(Z,,Z,)
e When the termination is complex impedance, then SWR can be found, first finding the
magnitude of the RC over the line by using,
_lz-2]
2, -2
And then the SWR by using Eq. (14.41a). Or one can find it using the Smith chart also.
Significance of SWR
There is a lot of significance for SWR particularly at high frequencies like microwaves, where
the lines are essentially loss-less. Its importance stems from the following facts:
e It is a quantity that is easily measureable, where as its competitor, RC, being complex,
difficult to measure.
e It provides a means by which one can estimate the terminating impedance of loss less line.
e |t can also a measure of the extent to which a reflected waves exist on the system.
SWR versus RC
Even though both these parameters are used to describe the mismatch and reflections over the
line, there exist some fundamental and basic differences, listed below, between them.
1. RC can be defined both for lossy as well as loss-less lines, where as the standing wave ratio
is meaningful only for loss-less lines.
2. RC varies from -1 to +1through O, in general a complex quantity, whereas the standing
wave ratio varies from 1 to o, always a real one.
3. RC varies from point to point over the line whereas the standing wave ratio is specified for
the entire length of the line.
4. RC of voltages is negative of RC of currents whereas the standing wave ratio remains same
whether it is voltage-ratio or current-ratio.
5. The chief advantage of SWR over the RC is its measurability. RC is difficult to measure
where as the standing wave ratio is easily measurable quantity.

r



INPUT IMPEDANCE

The input impedance of a line is the impedance offered by it at the input terminals. As the
source is connected at the input terminals, this quantity has some special significance while
selecting the source. During computations, input impedance is quite an useful parameter to find
the power flowing into the line when a generator is connected to it. To push maximum power
over to the line, the source impedance and input impedance of line must have a complex
conjugate relation.

5%} 7 f'_| Z-,—,,=zazi +Zotanh ¥/
v Z +Z;tanhy!

vt % B nezwma
Z:’n_f ﬂZg+jZItanﬁf
(fassless lne)

Figure 8 Input impedance of a line terminated over an impedance.
Formally, the input impedance of a line can be defined as the ratio of complex phasor voltage to
complex phasor current at its input terminals, as shown in Figure 13.16. Mathematically,
_V,, _ Input voltage

in

" 1. Input current

in

It is complex quantity, value being dependent upon the configuration, length and termination of
the line. For a line of length | terminated over an impedance, Z,, for a general line and then for
a loss-less line, it is given by
z -7 Z, +Z tanhyl & z -7 Z, + j-Zo tan gl
Z,+Z, tanhyl Z,+ jZ, tan Sl
To derive these relations, consider a line of length | terminated over an impedance of Z,,
The input impedance of this line by definition is
vV, V
Z= Z|d=| 1 1
IS I d=I
By substitution of the expressions for voltage and currents, from Egs.(13.53), into the above
relation, one can obtain that

_V,coshyd +1,Z,sinhyd |
"1, coshyd +(V, /Z,)sinhyd | _

_ V.coshyl+L,Z,sinhyl (V. /I,)+Z, tanhyl
1, coshyl +(V,/Z,)sinhyl  1+(YZ,)tanhyl
However, V, /1, = Z,, as the line is terminated over Z,. Thus,
_ Z+Ztanhyl _ Z,+Z, tanhyl
" 1+(YZ,)tanhyl  ° Z, +Z, tanhyl
In case of loss-less lines, y =j and tanh yl = jtang/. In transmission line theory, the impedance
of a line or load, divided by CI of line is called normalized impedance and process is hamed as
normalization. Normalized impedances are indicated by small case letters. Input impedance can
also be expressed in terms of normalized quantities:
_Z,, _ z,+tanhyl & _Z,_z+jtanpl

Z. = Z. =
" Z, l+z tanhyl " Z, 1+ jz,tanpl

(o} (o}




Similarly, expressions for input admittance, both for general as well lossy lines can be derived.
It is also possible to express normalized input impedance and admittances in terms of
normalized load impedance and admittances.

It can be very easily shown that input impedance is Z, tanh yl in case of shorted line and Z,
coth yl in case of opened out line.

Z,+Z tanhyl |
°Z,+Z, tanhyl ‘leo
With open circuit termination, its input impedance becomes,
7 7 _7 Z,+Zotanhyl|

Mame 0 07 +Z, tanhyl ‘
In case of loss-less line, y =j§ resulting in Zs. = Z, j tanh pl and Z,. = —Z, j coth pI .

z.| =z, =2

inlz,=0

=Z, tanhyl

=Z, cothyl

Z >

T R

General line Loss-less line General line Loss-less line
Y=a+jp Y=j8 y=a+jB Y=jB
4 L 1 4
. ! ] I Y, +Y, tanhy] Y, + Y, tan fi
zZ,-1, Z,+Zotanh'ri z,-7, Z,+jZ, tan,@_* Y, -V, ;+Y, tan v |y, -y, J Jil
Z,+Z, tanh yl Z,+ JZ,tan Sl Y, +Y, tanhy! Y, + jY, tan 5
;- z, +tanhyl . - z,+ jtan Bl v = ¥, +tanhyl v = y,+ jtan Gl
®" 1+z,tanhyl * 1+ jz, tan S "% 14y, tanhyl T 1+ jy, tan Bl

Figure 13.17 Input immitance of a transmission line.

T and m© equivalent circuits:

Consider a T circuit with series elements equal to Z; and shunt element equal to Z. If this
circuit is equivalent to a line of length, | then both must give same input impedance on short
circuit as well on open circuit. Equating their input impedances on open circuit gives,

Z Z, L
Z,.7 ﬁz: I.iu hl‘
i ) | ] |
| s 3
(a) (b ()

Z,+Z,=2Z cothyl >Z,=2Z cothyl-Z,
Equating their input impedances on short circuit gives,

Z+Z|\Z,=Z,tanhyl > Z2,(Z,+2Z,)+2,Z,=2Z (Z,+Z,)tanhyl
Combining these two relations gives,
Z,Z cothyl +Z,(Z, cothyl -Z,) =Z_Z cothyl tanhyl = Z?



22 -22,Z, cothyl + Z% =0 - Z, = 127, cothyl £[ (22, cothy1)? - 422 ]

Z, =, cothyl £[ (Z, cothyl)? 22 |"* - Z, = Z, (cothyl cschyl)
Solving this equation for Z; results,

Z,=Z, tanh(yl/2)

Now Z, can be found from

Z,=Z,cothyl-Z, =Z cothyl—Z tanh(yl/2) =Z, /sinhyl

Consider a 7 circuit with shunt elements equal to Zg and series element equal to Za. If this
circuit is equivalent to a line of length, | then both must give same input impedance on short
circuit as well on open circuit. Equating their input impedances on open circuit gives,
Z,|(Z,+2Z;)=2,cothyl

Equating their input impedances on short circuit gives,

Z,||Z; =2, tanhyl

LINE SECTIONS

Small sections of lines find useful in the design of circuits for specific purposes like load
measurement, impedance transformation, load matching etc., where they are not used for power
or signal transmission. Eighth wave line, quarter wave line and half wave line belong to this
category. A brief description and the theoretical background of these lines are given below.
13.10.1. Eighth-wave lines
The salient features of eighth wave transmission lines are:
e These are uniform and loss-less lines with real ClI i.e. Z, =R, with length equal to //8.
e The magnitude of input impedance is equal to their Cl, |Zi,|=R, when

termination is over a pure resistance, i.e. Z; = R,

Proof: The input impedance, from Eq.(13.61), of a loss-less line of length 4/8 is

2l - Z, + jz, tan B _z 4+id,
inli=2/8 °Z,+jZ tan I ‘I:l/B "Z,+]z,

If the line is terminated in a pure resistance Z, = R, then,
Zin||:/1/s o E u J-RO
0 + JRI

The numerator and denominator have identical magnitudes, and hence, |Zi|i=s=Ro, @
pure real quantity. Consequently, the magnitude of the input impedance becomes equal to the CI
of line, Z, (= R, pure real as line is loss-less) when termination is over a pure resistance.

To conclude, an eighth-wave line can be used to transform any resistance into an
impedance, hose magnitude is equal to CI i.e. |Zi;| = R, of the line. Hence, it can be used to
obtain a magnitude match between a load resistance of arbitrary value and a source of internal
resistance equal to R, .




Figure 9 Input impedance of(a) eighth wave line and (b) quarter wave line.
Quarter-wave lines
The salient features of quarter wave transmission lines are:
e These are uniform loss-less lines with lengths given by A/4+nA/2, n =0,1,2......
e The input impedance of these lines is inversely proportional to the terminating impedance
Proof: The input impedance, of a loss-less line of length A/4 is
A Z, + iz, tan Bl|
M= 07+ jZ, tan B Lm
As B=2r/A,pBl= (27z/i)(i/4) =7/2
2, - Z +jZ,tan(7/2) - Z,/tan(z/2)+jZ, Z?
Miae Tz +jztan(n/2) 0 Z, /tan(n/2)+ jZ,  Z,
The above relation can be put in an interesting form.

Z; zZ 1
inli=p/a _ &, _ _
7 - ZI ) Zl _yl ? Zin 1=2/4 yl

0

Thus, the normalized input impedance is equal to normalized load admittance for quarter wave
section.

e From Eq. (13.81), it can be observed that the quarter wave section acts as an impedance
transformer or impedance inverter. The input impedance is large when the terminal impedance
is small and vice versa.

Provided the CI is resistive, a large pure resistance termination gets transformed into a
small pure resistance and vice versa. Its input impedance is pure inductive if the termination is
pure capacitive and vice versa. If the output impedance consists of a resistance in series with an
inductive reactance, the input impedance becomes a resistance in parallel with a capacitive
reactance and vice versa.

e An ideal quarter-wavelength line, 1=(2n-1)A/4, n=1,2,3.., is supposed to exhibit an input
impedance of infinite on short circuit and zero on open circuit. However, infinite and zero
impedances are not achievable in practice and what that appears is an input impedance of large
value on short circuit and a small value on open circuit. Now, those impedances are estimated.
(1)Short circuited quarter-wavelength line, the input impedance is,

ZSC = RO/aI

This is resistive, impedance maximum and highest value is possible when | is least achievable
i.e. I=A/4. The behavior of this line section can be found to similar to that of an antiresonant
circuit near resonance.

(2)Open circuited quarter-wavelength line, 1=(2n—1)A/4 input impedance is

Z,.=Ral

This is resistive, impedance minimum and lowest value is possible when | is least feasible i.e.
I=\/4. The behavior of this line section can be found to similar to that of a series resonant
circuit when frequency is varied near resonance.
Proof: Consider relation for input impedance for a shorted line of length | and expand it with

T=otjp
Z, =Z, tanhyl =7

sinh(a + jB)I 7z sinh el cos Sl + jcoshal sin gl
®cosh(a+ jB)I  ° coshalcos Bl + jsinhalsin gl



For line of lengths equal to an odd multiple of a quarter wavelength, sin g/i=t1and cos f/=0. As
the attenuation is small when working at high frequencies, a/ is also small, and in general,
coshal~1, sinhal/~ al making the input impedance,
coshal R,
s Zo - =
sinhal al
When the line is on open circuit, Z,. =Z, coth yl and manipulation on similar lines leads to ().

e It can also be used to step up the voltage. As long as it is loss-less, the ratio between output
and input voltages is just square root of ratio of output to input impedances that are being
matched.

Derivation:

Consider the voltage equation, for loss-less line,. For a quarter wave line, d=4/4, and the input
voltage Vs becomes,

V,=V|_,=iV12)Z,=I,Z,
and hence, the ratio of input to load voltages becomes,

VvV, .| .1 . /Z

—S=jlz =j=Z2Z =j ==

V| JV| 0 JZ| 1=s J Z|
The voltage step up i.e. the ratio of output voltage to input voltage, then, becomes
Vil_ [4
VS ZS
In the case of open circuited quarter wave line, the step up is infinite but it is for an ideal case of
absolute loss-less line. To find the exact step up for practical case of a low-loss line, it requires
considering the equation which takes the losses and the consequent attenuation into account.
Consider the voltage equation. As the line is open circuited, I} =0= I, second term becomes
zero. As the line is quarter wave in length, I=A/4 and yl=(al+;p))=(al+jpAl4)= (altjnl2).
Incorporating these aspects into the voltage equation results in

V =V, =V, coshyl = jV,sinhal = jV, al

For a low- loss line, attenuation constant is given by, a=R/2Z, and for a one quarter wave line
i.e. I=4/4. Hence, voltage step-up is,

V| 1 2z,

V.| al  RI

Incidentally, for a three quarter-wave section, 1=3//4, three times that of a single quarter wave
section, and hence, the voltage step-up is one third of that for single quarter wave section.
e The frequency sensitivity is the main drawback of this line section.
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Figure 10 Quarter-wave line in action. As (a) insulator and and for (b) driving
(load matching)an antenna.

e Applications:
= |t acts as impedance transformer or inverter as it can step-op or step-down the
impedance.
= |t can be used as voltage step up transformer.
= |t is used for load matching purposes.
= Another application of the sc quarter-wave line is as an insulator to support an open-
wire line or the center conductor of a coaxial line. This application makes use of the
fact that the input impedance of quarter-wave shorted line is very high.
13.10.3. Half-wave lines
The salient features of half wave transmission lines are:
e These are loss-less and uniform lines, with length given by, nA/2, n=1,2......
e The input impedance of these lines is equal to the terminating impedance, as illustrated in
Figure 13.21. This property is independent of CI, Z, but frequency dependant.

F—r— |

v_‘
Z,=%, |:| Z,
Vj

zz’nz Ij = zl. ‘_,_j

Figure 10 Input impedance of half-wave line.

Proof: The input impedance, from Eq.(13.61), of a loss-less line of length, /2 is
Z, + iz, tan Bl| _, Z+iZtanm

Zin||=/1/z = %o : TS0 i o

Z,+ jZ, tan gl L:M Z,+]Z tanx

It proovess input impedance of A/2 lines is equal to their terminating impedance.

¢ An ideal half-wavelength line, I=nA/2, n=1,2,3.., is supposed to exhibit an input impedance of
zero on short circuit and infinite on open circuit. However, zero and infinite impedances are not
achievable in practice and what that appears is an input impedance of small value on short
circuit and a large value on open circuit. Now, those impedances are estimated.

(1)Short circuited half-wavelength line, input impedance is

Z, =Rl

This is resistive, impedance minimum and lowest value is possible when | is least feasible i.e.
I=\/2. The behavior of this line section can be found to similar to that of a series resonant
circuit near resonance.

(2)Open circuited half-wavelength line, I=n)/2 input impedance is

ZOC = RO/aI

This is resistive, impedance maximum and highest value is possible when | is least achievable
I.e. I=M/2. The behavior of this line section can be found to similar to that of a parallel resonant
circuit when frequency is varied near resonance.




Proof: Consider relation for input impedance for a shorted line of length | and expand it with
y=o+jf , resulting in Eq. (13.86). For line of lengths equal to an even multiple of a half-
wavelength, sin g/=0and cos fl=+1. As attenuation is small when working at high frequencies,
al is also small, and in general, coshal~=1, sinhal/~ a/ making the input impedance,

7. ~2Z sinhal _ Rl
coshal

It can be noticed that short circuited A/4 line gives higher input impedance compared to open
circuited /2 line and open circuited A/4 line gives lower input impedance compared to short
circuited A/2 line. It implies that the line which is shortest gives better impedance properties and
hence is desirable. The factor n appearing in various expressions also influences impedance, by
lowering maxima and raising minima, as n increases.

Applications:

e It has its greatest utility in connecting a load to a source in situations where the load and
source cannot be placed adjacent to each other.

e The short circuited 4/2 line can act as a band-stop filter, it can be used to measure velocity
factor and dielectric constant of medium.

¢ Half wave line is also used to measure the impedance that is not accessible physically.
SPECIAL TYPE LOSS-LESS LINES

Loss-less transmission lines with short circuit or open circuit terminations are very often
encountered, in applications like load measurement and load matching. Through proper choice of
the length of a short or open circuited line, it is possible to obtain substitutes for capacitors and
inductors with any desired reactance. Such a practice, indeed, is common in the design of
microwave circuits and high-speed integrated circuits because making an actual capacitor or
inductor is often more difficult than making a shorted or opened out transmission line.

It is also possible to simulate resonant circuits, with shorted or opened out transmission line.
These properties are utilized in the design of band pass and band stop filters at microwave
frequencies. It should be noted that unlike an ideal LC circuit, the shorted line has an infinite
number of resonances.

Here, these special types of lines are considered and examined. Let us consider a uniform loss-
less line of length 'I' lying along x-axis, with input point at x=0 and load point at x=I. First the
line is short circuited and then it is open circuited.

Short circuited line

Note that as the line is shorted, load impedance is zero, Z,=0. The voltage, current waveforms
and input impedance of these lines are shown in Figure 14.15.

e RC: The voltage RC over the load is

ZI _Zo
||z|=o - =-1
Z+Z, 20
As the line is loss less, the magnitude of the RC remains same at all points over the line.
r=[r[=|-1=1

However, the phase of the RC changes from point to point.

e SWR: As the line is loss-less, it can have the standing wave ratio, SWR. For this line, it can be
computed from the available value of T, as shown below.
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Figure 14.15. (a)Voltage and current waveforms and(b) input impedance of a line when shorted.
e \/oltage pattern: The total voltage on the line is sum of voltages of incident and reflected
waves, which can be expressed as
V=Vie X pvel

As line is loss-less and reflection is complete or perfect but with phase reversal(because of SC),

"= — V. The load is located at x=I, and hence, the voltage pattern over a short circuited line
becomes,
V. (X)=-2jV"sin B(x-1)

SC
e Current pattern: The total current on the line can be expressed as

=Y, (Ve -ve)
With V'=— V", the current pattern of shorted line becomes

I, (X)=2Y,V*cos B(x—1)
From the voltage pattern one can observe that the voltage is zero at the load i.e. at x=I as it
should be for a short circuit, and its amplitude varies as sin g/. And from the current pattern, it
can be observed that the current is maximum at the load and it varies as cos fI.

In case of short circuit termination, it is a current anti-node and a voltage node that
exists right over the load. In this case, as the total voltage is required to be zero over the load,
the voltage must get reflected with 180° phase shift whereas the current need not under go any
phase shift. It results in voltage node and current anti-node over the short circuit termination.
The voltage and current waveforms on a short circuited loss-less line are shown in Figure
14.15(a).

e Input impedance: The input impedance of this loss-less shorted line can be computed as
Z =Z jtan pl. (14.62)

in|z,=0
From the above expression, input impedance of an open circuited line is purely reactive, and it
can be positive, negative, zero and even tends to infinity, as is shown in Figure 14.15(b). Hence,
it can behave like an inductor, capacitor and also as a resonant circuit.
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Open circuited line
Note that as the line is open, load impedance tends to infinity, Z; —. The voltage, current
waveforms and impedance of these lines are shown in Figure 14.16.

.co

Parallel LC

resonant circuit

Series LC

Capacitive resonant circuit

e RC: The voltage RC over the load is

Z -Z
rf,, =22 =1
! Z+Z, 2,
As the line is loss less, the magnitude of the RC remains same at all points over the line.
I'=|r|=1

However, the phase of the RC changes from point to point.

e SWR: As the line is loss-less, it can have the standing wave ratio, SWR. For this line, it can be
computed from the available value of ', as shown below.
1+

PoiT
e \/oltage pattern: The total voltage on the line is sum of incident and reflected waves, which can
be expressed as,

V=V'e P pvrel”
As line is loss-less and reflection is complete or perfect(because of OC), V= V. The load is
located at x=I, and hence, the voltage pattern over the open circuited line becomes,

V,. (x)=2V"cos B(x 1)
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Figure 14.16. (a)Voltage and current waveforms and(b) input impedance of a line when open.
e Current pattern: The current on the line is

=Y, (Ve -ve)
With V=V, the current pattern over the line becomes,



I (X)=2jY,V"sin g(x-1)
Note that from the current pattern, the current is zero at the load i.e. at x =1 as it should be for a
open circuit, and its amplitude varies as sin gl. Similarly, from voltage pattern, it can be observed
that the voltage is maximum over the load and it varies as cos SI.

When the termination is open circuit, the current gets reflected with 180° phase shift, since the
total current has to be zero on an open circuit and the reflected current has to cancel the incident
current which can happen only they are out of phase. However, the voltage gets reflected without
any phase shift, as the direction of travel of the wave and phase of current being reversed,
reflected voltage cannot have a phase shift. Thus, it is a current node and consequently, a voltage
anti-node that exists right over the open circuit load.

Input impedance: The input impedance for a loss-less line is given by

Z, =—]JZ,cotpl.

Nz, =w
From the above expression, input impedance of an open circuited line is purely reactive, and it
can be positive, negative, zero and even tends to infinity, as is shown in Figure 14.16(b). Hence,
it can behave like an inductor, capacitor and also as a resonant circuit.

Input impedance
on open circuit

LZ"&L:--.» =—jZ_cot FI

| cot Bl —» posiﬁve‘ |C0t Bl — negaﬁve| |[cot BI— zero| | cot BI—> infinity

e L Cecuit|  besonant cicvit
Some of of the applications of opened out lines in Antennas are,

e Opened out parallel wire A/4 transmission line is used as wire radiator, called 'half wave
dipole'.

e Opened out parallel wire transmission line of length less than A/4 is used as wire parasitic
radiator called 'director' in Yagi-Uda array. Thus, the director carries capacitive currents. In
other words, an opened out line excited at a frequency less than resonant is capacitive.

e Opened out parallel wire transmission line of length more than A/4 is used as wire parasitic
radiator called 'reflector' in Yagi-Uda array. Hence, the reflectors carry inductive currents. In
other words, an opened out line excited at a frequency more than resonant is inductive.




UNIT-H

TRANSMISSION LINES-II
Assignment-Cum-Tutorial Questions

SECTION-A
1. The distortion-less line condition is [ ]
a) R/L=G/C b) R/L>G/C
c) R/L<G/C d) None of these
2. The loading of line refers to the connection of [ ]
a) Inductive coils b) Capacitive boxes
b) Both (a) and (b) d) None of these
3. The reflection coefficient right over the source is [ ]
(Z,-2,) (Z,+Z,)
a) (Z,+Z,) (b) (Z,-2,)
(2,-2))
(©) (d) None of these
(Z,+Z,)
4. The load voltage V. of a lossless OC transmission line in terms of V*'is [ ]
aVL=V~* b)VL= ()V* ¢) VL=2V*' d)VL=(V"?
5. Zo in terms of Short circuit impedance Zsc and open circuit impedance Zoc [ ]

. The dependence of attenuation on frequency causes
. Distortion-less condition is
. Load matching refers to termination of line with
. The input impedance of a transmission line is a function of its length. (yes/no)
14.

a) Zo=Zsc*Zoch) Zo=+vZSC * ZOC ¢) Zo=(Zsc ™ Zoc)2 d) Zo="Y(Zsc * Zoc)

Wave line acts as impedance transformer or inverter.

An open circuited line with length <A/4 is equivalent to .
An open circuited A/4 line is equivalent to circuit.
An open circuited line with length > A/4 is equivalent to an

Write the ranges of reflection coefficient and standing wave ratio.

15. Eighth-wave line transforms any resistance to impedance with a magnitude equal to ~-----

of the line.

SECTION-B
Descriptive questions

1.
2.

3.

Explain about the A/2, A/4, A/8 transmission lines. [C02]

Derive an expression for the input impedance of a loss-less line which it is terminated by
(a) aload Z; (b) open (c) short circuit and draw the suitable sketches. [C02]

Draw the line impedance curves of a lossless SC and OC transmission lines and analyze
its inductive and capacitive properties. [C02]



4. Explain about the lossless lines and distortion less line. [C01]

5. What is loading? Discuss different types of loading methods mentioning their relative
merits and demerits. [C02]

6. Describe the T and m sections of transmission line. [C01]

7. Differentiate SWR(S) from Reflection coefficient (K). [C02]

8. What is distortion-less condition? Derive the relation for distortion-less line condition on
the primary constants. [C02]

9. What are properties and applications of eighth wave line, quarter wave line and half wave
line? Given a list of their applications. [C02]

Problems

1. Determine the primary constants, R, L, G, and C for a distortion-less line working at
300MHz. Given that the line has characteristic impedance, Z, =75Q, attenuation constant,
0=0.12Np/m, and wave velocity, v=1.4x108m/s. [C02]

2. A loss-less 75Q line, 50/8 in length, is terminated on a load Z;. Find out its input
impedance Zinwhen (a) Z=j45Q (b) Zi= 25-j65Q. [C02]

3. Determine the input impedance of a short circuited 50Q coaxial line with f = 8.5rad/m
when line length is (a)15cm(b)1.5m(c)3M/4 and (d)A/8. [C02]

4. A transmission line used to connect a transmitter to its antenna has a characteristic
impedance Zo = 50 Q. The antenna with impedance Z_ = (100+j75) Q is connected as a
load. Calculate load reflection coefficient. [CO1]

5. A distortion less transmission line is characterized by R = 1.6Q/m, L = 0.8uH/m, and
C= 10 nF/m. Calculate shunt admittance G. [C01]

6. Zoc= 900<-30°,Zsc=400<-10°. Calculate the Zo and propagation constant of a 12 Km
long line. [CO2]

7. Addistortion less line has Zo=60 Q, =20 m Np/m, u=0.6¢ where c is the speed of the light
in vacuum. Find R, L, G and C at 100MHz. [CO01]

8. A lossless transmission line used in a TV receiver has a capacitance of 50 pF/m and an
inductance of 200 nH/m. Find the characteristic impedance for sections of a line 10 meter
long and 500 meter long. [C02]

SECTION-C

1. A transmission line with a characteristic impedance of 100Q is used to match a 50

Q section to a 200 Q section. If the matching is to be done both at 429MHz and 1GHz,
the length of the transmission line can be approximately(GATE2012) [ ]
(A)825cm (B)1.05m (C)1.58m (D) 1.75m

A transmission line of characteristic impedance 50Q2 is terminated in a load impedance
Z). The VSWR of the line is measured as 5 and the first of the voltage maxima in the
line is observed at a distance of A/ 4from the load. The value of Z; is (GATE2011)[ ]
(A) 10 (B) 250 (C) (19.23 +j46.15) (D) (19.23 —j46.15)



Transmission lines and Waveguides(UNIT 111y

A. Questions testing the remembrance/understanding level of students

I. Objective/Multiple choice questions

. In single stub matching, length of stub is and location of stub is

. Equation representing circles is ---—-- and that representing arcs of the chart is -——-

1

2

3. Double stub matching is not possible when the load falls in region
4. Over the Smith chart, full circles represent-—-—--and arcs represent--——.
5. Over the Smith chart, the upper half is——- and lower half is-—-.
6. Smith chart uses only----- and describe the line for -,

7. The centre of constant SWR circle is always the--—- of the chart.
8

. Vinax, Imin @nd p correspond to-—— half the chart and Imax, Vmin and 1/p correspond to-—-- half

the chart

I1. Descriptive questions
What is Smith chart.
Differentiate loss-less line from low-loss line.
Why CI is real and PC is imaginary at high frequencies.
Locate voltage max and min for pure resistive termination.

Awnh e

B. Questions testing the ability of students in applying the concepts
I. Multiple choice questions
1. The Smith chart can be characterized as
a) A Polar plot b) represents complex RC
c) Inscribed in a unity circle d) all
2. The complete circles and arcs in the Smith chart, respectively, represent

a) Normalized resistance/conductance, Normalized reactance/ susceptance

b)Normalized reactance/ susceptance, Normalized resistance/conductance
¢) Normalized reactance, susceptance d) none of these

3. The circles and arcs over the Smith chart are

a) Orthogonal b) Opposite to each other

c) At 45° d) None of these

4. The upper half and lower half of the Smith chart, respectively, represent

a) Positive, nagative reactance/susceptances

b) Capacitive, inductive reactance/susceptances

c) Resistance, conductance d) None of these
5. The radius of the constant SWR circle isequal to

a) Voltage SWR b) Current SWR
¢) Both (a) and (b) d) None of these
6. The centre of the constant SWR circle falls over

a) ‘1’of horizontal line b) centre of the chart
¢) Both (a) and (b) d) None of these



7. In the left-half and right-half of the chart, resistance and reactance values, respectively, are

a) More than 1, less than 1 b) Less than 1, more than 1
c)1.1 d) 0,0
8. The left most and rigtht most points of the chart, respectively, represent
a) (0,0), (0,) b) (0,20),(0,0),
c) (0,0), (1,1) d) (1,1),(e0,0)
9. The top most and bottom most points of the chart, respectively, represent
a) (1.1), (-1,-1) b) (-1,-1), (1,1)
¢) (1,1), (0,0) d) None of these

10. Smith chart is always used with
a) Normalized impedances b) Normalized admittances

¢) Both (a) and (b) d) None of these

11. The Smith chart is useful to analyze

a) Loss-less lines b) lossy-lines

¢) Both (a) and (b) d) None of these

12. The horizontal line left and rigth of the centre, respectively, represent
a) Vinaxs Imax; Vmin, Imin D) Vmin, Imax; Vimax, Imin
C) Vmin, Imin; Vimax, Imax d) None of these

13. The movement towards load and towards source over the line, respectively, correspond to,

a) Clock-wise, anticlock-wise rotation over the Smith chart
b) Anti-clockwise, clock-wise rotation over the Smith chart
¢) Upwards, downwards d) None of these

14. The points over SWR circle, diametrically opposite to load impedance and load admittance
points, respectively, are

a) Load admittance, load impedance b) Load impedance, load admittance
¢) ClI, Cl d) None of these
15. Travel of length A4/2 over the line corresponds a rotation of
a) 180° over the chart b) 360° over the chart
c) 90° over the chart c¢) None of these
Il. Problems

1. A loss-less Z,=100Q line, terminated over an unknown impedance carries a wave with
SWR=4. The first Vpin is found at a distance of A/8 from load. (a) Determine load
impedance, Z.. When a matching QWT with ClI, Z,, is inserted, find out the (b) minimum
distance between load and quarter wave line and (c)value of Z,, in terms of Z,. Rework
the problem when it is Vax at A/8 instead of Vin.

Answers: First case: (a)(47.05— ] 88.23)Q, (b)0.125A, (¢) Z,/2Q2 Second case: (a)(47.05+ j
88.23)Q, (b)0.1254, (¢)2Z,2



2. A loss-less air dielectric 120Q line, working at 300MHz is terminated on a 36Q resistive
load. Find the length of a single shorted parallel connected stub and the location nearest to
load for matching the line.

Answers: 39.4cm, 8cm,

3. A voltage source, Vg =120V with internal impedance, Zg =50Q is energizing a 50Q line,
0.64A in length and terminated on a load with impedance, Z, =75Q. Compute the time-
averaged power delivered to line by source.

Answers: 34.56W

4. A loss-less 140Q air dielectric line i.e. &=1 is matched to a load of 280Q at 200MHz by
means of a parallel shorted stub, Find the (a) length of stub and its position nearest to load.
If the frequency is changed to 220MHz, without altering the circuit in anyway, find the
(b)VSWR on the main line. Re-work the problem when the line has an insulation dielectric
constant of 2.25.
Answers: For ¢ =1(a) 22.80cm,22.65cm (b)1.22,for & =2.25(a)15.20cm,15.20cm(b)1.23

5. A loss-less 75Q line is terminated on a load with impedance, (100+j150)Q. Using Smith
chart, determine the distance from load where the line impedance is (22.50+j47.25)Q.
Answers: 0.4A.

6. A loss-less 50Q line is connected to an unknown impedance giving a maximum voltage of
Vimax =0.90V and a minimum voltage of Vnyin =0.45V over the line. When the load is
replaced by a short, the shift in minima is found as 0.15A towards source. Using Smith
chart, find the load impedance.

Answers: Z=(50+ j32.5)Q

C. Questions testing the Analyzing/evaluating/creative abilities of student

1. Explain the need and method of loading technique. Discuss different types of loading methods
mentioning their relative merits and demerits.

2. Define matched line. What are the advantages of transmission over matched line? Explain
why a matched line does not carry reflected wave.

3. Describe the procedure of load matching with quarter wave transformer for different types of
loads. What are the advantages and short comings involved in this method?
4. Describe the method of single stub matching. Derive the relation for the length and location
of the stub.
5. Describe Smith chart and its salient features.
D. Previous GATE/IES questions

1. For pure reactance and pure resistance loads, load points over the Smith chart, respectively,
stay at,

a) At the periphery, over the horizontal line b) Over the horizontal line, At the periphery

c) Inthe lower half, At the periphery d) In the upper half, over the horizontal line
2. For a match terminated loss-less line, the location of load point over the Smith chart is
a) At centre b) At periphery

¢) In the upper half d) Inthe lower half



LOAD MATCHING

A line is said to be matched to the load when the load accepts all the power that has been
placed over the line by generator without any reflections back. Under matched conditions,
therefore, the line carrys only the forward traveling wave, with no reflected wave. It is shown
soon that it can happen only when the load impedance is equal to the characteristic impedance of
the line. Mathematically, matched termination implys,

Z,=2, (15.6)

Proof: Consider an infinite line, with its load, naturally located at infinity. When a wave
IS impressed at its the source end, it starts traveling towards the load. However, as the load, the
generation point of the reflected wave is at infinity, the wave can never reach it, and hence, there
can never be a reflected wave over an infinite line.

Next, consider a finite length line terminated over its characteristic impedance. As the
input impedance of the infinite line is equal to its characteristic impedance, the finite line under
consideration can be viewed as a line terminated over an infinite line, making the combination
another infinite line. As infinite line cannot have reflected waves, the finite length line
terminated over its characteristic impedance also cannot have reflected waves, and hence, is a
matched line.

When the line is designed for transfer of power to the load, then matched termination
brings several advantages like maximum power transfer, maximum efficiency, lesser peak
voltages, lower flashover likelihood, elimination of modulation distortion etc. Regarding power
flow over a loss-less line, the following points, in the light of load matching, should be noticed:

e For reflection-less transfer of power into load from line, load impedance must be equal to
characteristic impedance of line

e When loss-less line is terminated over short or open or pure reactance, power into the line
system from generator as well into load from line is nil.

e For maximum power transfer from source into line, the source impedance must be
conjugate of input impedance of line.

e The entire output of source can be placed over the line only when its internal impedance
is equal to characteristic impedance.

e The reflected wave from the load gets nullified by the source when its internal impedance
is equal to characteristic impedance.

e When the line is loss-less, the power delivered to load is equal to power placed over the
line by source. In case of lossy line, power to load is less than the power placed over the
line by source

When the line is terminated over impedance which is different from its characteristic impedance,
reflections occur resulting in an inefficient transmission system and also all the benefits
mentioned above are absent. Hence, mismatched operation of the line is unwanted and to
eliminate or reduce the reflected wave over the line certain measures, called load matching
techniques, are developed. They are,

1. Quarter-wave transformer technigque

2. Single-stub matching technique, and

3. Double-stub matching technique.

In all these techniques, the reflected wave is eliminated from line only on the source side of
matching device. Remaing part of line carrys reflected wave, and hence, standing wave.Another
aspect of importance is, the distance between matching device and load is always less than one



half-wavelength. However, incase of inaccesability or presence of any physical obstruction, the
point of insertion may be shifted to an interger number of half wavelengths towards source side.
Now, a detailed description of these techniques is given below.

Example 15.3: A 100Q line of 1km long is terminated over a 200Q load. It is fed by a
generator of voltage, 10V and internal impedance, 50Q. Find the load voltage and load power
when the wave velocity, v=2x10m/s and frequency, f= 2x10°rad/s.

Solution: Given that, | = 1000m, Z, = Z, =200Q, and Z, =100Q. The phase shift constant can
be computed as f=wo/N=2x10%2x10° = 10° rad/m, giving pi=1, tanpi= tanl= 1.557. By
substituting the available values in the expression, the input impedance can be obtained as,

200+ 11557 _ 27 47 /_ 0 5080
100+ j311.481

This impedance is in series with the source resistance and the two together are across the
voltage source. The current through this impedance gives sending end current and voltage
across it gives sending end voltage of the line. They can be calculated as,

v
| oo _ 1020 ~ 0.0819.£0.365A
Z,+2, 50/0+77.47/-0598

V,=2Z,1,=7747,/-0.598%x0.0819,0.365=6.345/-0.233V

In"s

With the availability the sending end current and voltages, the receiving end current and
voltages can be computed. In computing these quantities, the relation yx = jsx= jx10°x10° =j ,
and also ¢’=121, e’=12-1 can be used.

V, =10.0819.£0.365[ (77.47£ 0598 +100.£0) 1 ~1+(77.47.£~0.598 ~100.£0)L/1]

=0.041.20.365[ (169.73£~1.26) +(56.54.2 ~1.26) |

=9.27/-0.895V
This is the value of the voltage across the load. The average power consumed in the load, then,
becomes

p=%|V,[ /R =4x9.27%/ 200 =0.215W

Example 15.4: Given (a) Z, = 100Q, Z=50Q and (b) Z, = 50Q, Z=100Q, determine the time
average power delivered to the load, when a loss-less line of length | =5A/8 is connected to a
source voltage, V;=100V, with an internal impedance, Zy=(30+j40)<.

Solution:
For the given values, pi=(27/A)%(51/8)=1.25n rad and tan p/ = tan 1.25x = 1. The input

impedance can be obtained as,

Z, =100

z, =100 10 _ g5, je0)2
100+ j50
The current into the line is
| V, 1000

= = . — =(0.497 - j0.452) =0.673£-0.74A
Z,+Z;, 30+)40+80+ j60

Now, the sending end voltage of the line is found.
V.=12Z, = (0.497— j0.452)(80+ j60)
=66.88- j6.34=67.3£4-0.09V



As the line is loss-less, power into load is equal to the power into the line, which is product of
sending end voltage and currents with power factor.

Pae = 50.673x67.3xc05(0.65) =17.99W

The angle, 0.65 (=0.74-0.09), in radians is the one in between sending end voltage and currents.
(b) In a similar manner, the input impedance and average power can be found as (40 — j30)Q
and 40W when Z, = 50Q, and Z=100L.

Example 15.5: Determine load impedance and time average power delivered under maximum
power transfer conditions when a 100Q loss-less line of length, 1=0.21 is driven by voltage
source, V4=100V, with an internal impedance, Zg= (25+j50)Q.

Solution:

Maximum power transfer into line happens when the source internal impedance is equal
to complex conjugate of the input impedance of line. When maximum power enters into the
line, as the line is loss-less, the power that enters into the load also becomes maximum. Hence,
for maximum power transfer into line and then into load,

Z,,=2Z,=25-j50Q
From the given values, fI=(27/0)%0.21=0.4x rad and tan g/ = tan 0.4x = 3.08. By substituting
the available values in the expression for the input impedance, in Eq. (13.61), one can obtain,

25 50 =100 2" J100x308 5 op sh50- 2t 1308
100+ jZ, x3.08 1+ jz,3.08
(0.25-j0.50)(1+ jz,3.08) =(z, + j3.08)

2,(0.54+ j0.77) = (<0.25+ j3.58)

(~0.25+ j3.58)
(0.54+ j0.77)

Next, the power onto the line, which is equal to the power into the load from line can be
computed. The current into the line is,

Vv, 10040
* Z,+Z, 25+j50+25- j50
The sending end voltage of the line is,
V. =12, = 2(25— j50) =1118--1.11
Pae =3x2x111.8xc0s(1.11) = 49.71W.

Note that the angle, 1.11 in radians, is the angle between the voltage and current.
Example 15.6: A loss-less Z, = 300 Q line is connecting a 100V generator to a pair of
antennas, each with an input impedance, Zan: = 73Q, through two branch lines, with Z, =300 Q.
The lengths of main and branch lines are same and equal to 3A/8. Find the average power
delivered to each one of the antennas.

Solution:
From the given data, fI=2zx34/81=3#/4 rad and tan 3z/4 = —1. The input impedance of each
branch line is computed using the relation given in Eq. (13.61).

Z, =100 = (296.40 + j240.33)Q2

| =2/0A




Z, + jZ tan gl _150 73— j150

Z;n = Zo f - f
Z,+ JZ, tan gl 150 j73

=(118— j92.55) O
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|

Figure 15.2 Generator feeding two antennas through two branch lines.
The load for main line is parallel combination of input impedances of branch lines, as shown in
Figure 15.2, and it is given by,
Z, =%Z',=59-146.3Q

The input impedance of the main line then is

(59— j46.3)— j300
300 j(59- j46.3)
The input current to the main line is

I, = 100 - =0.16920.685A

300+(156.53 - j373.10)
The power into the main line gets divided equally between the branch lines, ultimately, to go
into the antennas. Thus, the power delivered to each one of the antennas is half of the total
power into the main line, which is given by

P, =LI2R, =1(0.169)" (156.53)= 2.235 W
Power to each antenna, therefore, is 2.235/2=1.12W
15.2.1. Quarter wave transformer

Load matching can be enforced with a A/4 length loss-less line, called quarter wave
transformer (QWT). The reflection-less property of this device for continous waves is achieved
by adjusting reflections at two ends to balance out at the designated frequency. As given in
Eq.(13.66a), the input impedance of a quarter wave line is inversely proportional to the

termination impedance and directly proportional to the square of the characteristic impedance of
the transformer. Mathematically,

z 1=1/4 =Z ()Z,trans/“zl (157)

where Z, ans IS the characteristic impedance of the transformer line and Z; is its termination
impedance.

100£0° v Main fine 3000

15082
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Figure 15.3 Load matching with Quarter-wave transformer.(a) Real resistive load and (b)
complex impedance load.(a=13.1)
To match a loss-less line of characteristic impedance, Z, to a load of Z,# Z,, a QWT is inserted
between line and the load, as shown in Figure 15.3. The transformer is able to give the required
matching, provided its characteristic impedance, Z, «ans IS related to Z, and Z, through

Zo,trans = \/ZOZI (158)

Table 15.2 Details of QWT matching technique for complex loads.

S.No Attribute Load type Minima Maxima
1. Capacitive load: A6 i(_g . )
Location of QWT 6 is negative A apl ATE
2. from load, d, Inductive load: A 26,
i is positi 20 +7) v
| IS positive Ar A
3. Characteristic impedance of QWT, (1-1)) (1+1r,) z
Z oAl7q =\ Zo\/; Zo =—=
0.9 (1+FI) (1_FI) \/;

Proof: To avoid reflections, the termination impedance must be equal to the characteristic
impedance of the line. The termination impedance of the line becomes the input impedance of
QWT when the line is terminated over the transformer. The input impedance of the transformer
terminated over Z; can be varied and made equal to Z, by appropriately selecting its
characteristic impedance, Z,wans . Then, that is under matching, it can be written that,

=22 s /21 = Z,

o,trans

Zin||=x/4
It gives that

Zi,trans = ZOZ| = Zo,trans = \/ ZOZ|
It is same as EQ.(15.8). The procedure so far described works well only if the terminating
impedance is purely resistive. Otherwise, Z,ans , according to Eq.(15.8), becomes complex,
which cannot be realized with a loss-less transformer line, whose characteristic impedance can
assume only pure real values.
In case of complex load, this technique still can be used but with some minor
modifications, which are mentioned below.
e First, convert the load impedance to admittance and then find the susceptance part of it.
e Tune out this susceptance part of load admittance by connecting a shorted stub across the
load. Now, the effective load is pure real.
e Find the characteristic impedance of the transformer to be used, from the values of
effective load impedance and the characteristic impedance of the line.
e Connect the quarter wave transformer in between the load and line.
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Figure 15.4 QWT insertion for load matching.(a) Capacitive load and (b) inductive load.
Another method, useful to match complex loads, involves insertion of a QWT at the location of a
voltage maximum or a minimum point. It is already seen that the line impedance is pure real at
these points, whose locations are available in Eqgs. (14.35) and (14.36). It can be observed that at
distance of 16, /4z, from the load, either a minimum or maximum occurs, depending upon the
load type, as shown in Figure 15.4. It is preferred to insert the QWT at this point, because in such
case, the least length of line remains under reflected wave.

The line impedance at minima is Z,(1-T')/(1+I'))= Zo/p and the characteristic impedance
of the QWT to be inserted, therefore, should be ZoN(1-T)/N(1+T)= Zo/yp. And at maxima,
which occurs at a distance of £4/4 from the minima, the line impedance is Zo(1+1')/(1-T'))= Zyp,
and hence, the characteristic impedance of QWT should be ZoV(1+T)/N(1-T)= Zo\p. All the
details pertaining to QWT matching technique for complex loads are given in Table 15.2

A short circuited A/4 line is used for matching. The impedance at short circuit end is zero
and at the other end it is infinity. In between the ends, impedance varies as sqaure of distance
from shorted end. As shown in Figure 15.5(a), the load to be matched is connected across the
output terminals, and the line to be matched is connected at a distance d from shorted end ofA\/4
line where its impedance is equal to line impedance to be matched. When two different lines are
to be matched to the same load, then the scheme shown in Figure 15.5(b) is suitable. For this
technique, there is a limitation. At the input terminlas of a practical short circuited A/4 line, input
impedance is finite, not infinite. And hence, this system works well only when line to be
matched has an impedance less than that which exists at the open circuit end of transformer.

= e s
\_‘_ . .
};?1 \_me . ;.;Eq \13
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4
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Figure 15.5 Load matching with tapped quarter-wave line.(a) single line R, matching (b) two

lines R, , Ry matching to load, R,

A serious drawback associated with this technique is due to QWT being a single
frequency or narrow-band device, implying that this technique works satisfactorily only over a
small band of frequencies. However, by transforming in smaller impedance steps, by using two
or more quarter wave sections in series, each one accomplishing part of the total transformation,



the bandwidth may be increased greatly. But it is the smooth and gradual transition gives
maximum enhancement.

Another drawback is, it fails to function as a reflection suppressing device for a short
pulse. Only for steady state condition or for a very long pulse, this device can provide a match.
To avoid reflections for short pulses a gradually tapered line is needed.

Example 15.7: A quarter-wave transformer is used to match a 300Q main line to a 200Q
secondary line terminated over its Cl. When the system is working at 30MHz, assuming a
velocity facator of 0.65, find physical length and CI of transformer. Also find VSWR over the
main line when the transformer is not inserted.

Solution:

Assuming loss-less conditions, the physical length, | of A/4 transformer can be computed as,

| _£_0.650 B 0.65x3x10°®

_20C — —1.625m
4 Af 4x30x10
(J
Main line QWT Secondary line
Zowm Zog Zos Zi=Zss |:|

( (__?—l

Figure 15.6 A secondary line feeding main line through a QWT.
The secondary line is terminated over its Cl, and hence, its input impedance, which is also load
of transformer, is same as its Cl. As transformer is providing matching to main line, transformer
input impedance must be CI of main line. Thus, transformer’s CI becomes,

Z, 4 =~ ZomZins =~300x 200 = 2450

Without transformer, the load of main line is input impedance of secondary line, equal to 200€2.
Hence, VSWR becomes,
_ Max(R,,R) 300
P=Min(R,,R) _ 200
Example 15.8: Determine CI and physical length of load matching QWT for the given data:
(@) line Z,= 10022, Z= 150Q,C=12pF, f=10MHz
(b) line Zo=75Q, Zi= 509, £=2.25, f=50MHz
(c) line Z,=125Q, Z= 1009, velocity factor =0.8, f=100MHz
Solution:
(@) line Z,= 10022, Z= 150Q,C=12pF, f=10MHz
Cl of QWT becomes,
Z, qur = ZoZ, =+100x150 =122.47 O

The physical length of QWT is,
Ay 1 1
4 4f 4fCZ, 4x10x10°x12x107*x122.47

(b) line Zy=75Q, Z= 50Q, &=2.25, f=50MHz
Cl of QWT becomes,

Z, ot = ZoZ, = 75%50 = 61.24 Q

1.5

=17.01m




The physical length of QWT is,
N R T 3x10°
4 4f  4ffe, 4x10x10°x+/2.25

(c) line Z,=125Q, Z= 1009, velocity factor =0.8, f=100MHz
Cl of QWT becomes,
Z, ot = ZoZ, =+125x100 =111.80 Q
The physical length of QWT is,
_A_ v _08c_ 0.8x3x10°
4 4f 4f  4x100x10°
Example 15.9: Determine CI and physical length and physical distance of insertion from the
load of a matching QWT for the given data:(C and &, pertains to QWT)
(@) line Zy=100Q, Z;= 50+j75Q, C=12pF, f=10MHz.
(b) line Z,=125Q, Z= 50-j75Q, &=2.25, f=50MHz.
Solution:
(@) line Ze=100Q, Z;= 50+j75Q,C=12pF, f=10MHz.
RC over load and SWR over line can be found as,
r-2=2, S0+ 7100_ 5a7 1 g9
Z +Z, 50+ j75+100
1+ 1+0.537
P=1Tr 1 0537
As load impedance is inductive, QWT insertion point is voltage maximum. Hence,
characteristic impedance of QWT becomes,

Zy owr =AJZoZop = Zo[p =1004/3.32 =182.20Q
The physical length of QWT is,
Ay 1 1
4 4f 4fCZ, 4x10x10°x12x10*=182.20
Physical location of QWT is right over max whose distance from load, dy is,
d - A0, _v6 6 _ : 1.69 _ _6.15m
Y 4r Azt 4nfCZ, A4rx10x10°x12x1077x182.20

=5.00m

=0.60m

=3.32

=11.43m

(b) line Zy=125Q, Z;= 50759, &=2.25, f=50MHz.
RC over load and SWR over line can be found as,

ro2i=2, 020757125 0ng g 95

Z,+Z, 50-]j75+125

1+ 1+0.557

Po1 T 1-0857

As load impedance is capacitive, QWT insertion point is voltage minimum. Hence,

characteristic impedance of QWT becomes,

Zoowr =AJZoZo 1 p=Z,1[p =125//3.51=66.72Q)

The physical length of QWT is,

=3.51



AoV ¢ _ 3x10°
4 4f  4f. e, 4x50x10°V2.25

r

Physical location of QWT is right over voltage min whose distance from load d is,

_ _ 8
AO,  —CH 3x10° x1.95 _0.62m

A 4zt s,  4mx50x10°v2.25
Example 15.10: A loss-less Z,=125Q line, terminated over an unknown impedance carries a
wave with SWR=2.25. It is found that the first voltage maximum is at a distance of A/8 from
load. (a) Determine load impedance, Z, . For matching, a QWT with a CI of Z,; is inserted. (b)
Find out the minimum distance between load and quarter wave line and (c)value of Z; in terms
of Z, . Rework the problem when it is first minimum at A/8 instead of maximum.
Solution:
First Vimax at A/8:
e p-1_ 2.25—1_0 g5 ~ A6,

=1.00m

d, =

= =0. —=—-—>0,=15T7rad
p+1l 225+1 8 4r
7, =z 1T _1pglt03852157 o) 28 je3 8700
1-T, 1-0.385/157

Zoowr =AJZeZop =Zo\[p =125V2.25 = Q

First Vminat A/8:
r=£=t 22571 g5 Z_ZA0 L5 _ 1 57rad
p+1 225+1 8 4r

LTy gl +03852-157 _ o) 20 iaaen)
1-T, 1-0.385/-1.57

Zoowr =AJZZo 1 p=2Z,1\Jp =125//225=

Example 15.11: For a 75Q loss-less line, find the location nearest to the load to insert QWT and
the CI of QWT required to achieve matching for each of the following values of RC over the
load, (a) I'i =1/9, (b) I' =—j0.5 and (c) I'y 5j/3.
Solution:

In the solution procedure, the first step is to ascertain whether it is minimum or maximum
that occurs nearest to the load.
(a) In this case, over the load, the RC is pure real, and hence, its angle is zero i.e. 6, = 0. It
implies that load is pure real, voltage maximum or minimum occurs right over the load,
depending upon Z, > Z, or Z,; < Z,. In both the cases, insertion point is right over the load. In the
first case, maximum is right over the load, the Cl of QWT can be computed as,

ey [+ (9] 0
Z,,=2, / )" 75 /—[1_ 9] 75\/; =83.85Q

In the second case, minimum is right over the load, the CI of QWT can be computed as,

_ (1_F|) _ [1_(1/9)] _ 8 _
Z,,=2Z, /m =75 /m = 75\/% =67.08Q

ZI :ZO




(b) In this case, over the load, the RC is negative and pure imaginary. And hence, the load is
capacitive, nearest to load is minimum, where QWT can be inserted. Its Cl is computed now:

B /(1—1",) B f[1—0.5] 3 05
Z,,=Z, W_YS m-?S\/%—%.BOQ

(c) In this case, over the load, the RC is positive and pure imaginary and hence, the load is
inductive, nearest to load is maximum, where QWT can be inserted. Its Cl is computed now:

fwr) g [+ 3] o
Z, m_m m_m\g =106.06602

15.2.2. Single-stub matching

Stubs are small length, usually less than one half wavelength, loss-less lines with either
an open ciruit or short circuit as termination. Short circuit is almost always preferred as open
circuited stubs tend to radiate. These are widely used for load matching purpose. Their input
admittance is pure susceptance, and depending upon the stub length, it can be inductive or
capacitive. Stubs are used to nullify the line susceptance at the point of connection.When the line
admittance is inductive susceptance, captive stub and in case of captive susceptance, inductive
stub is used to nullify it.

P — Traveling . standing
Towards Z,=Z, wave WE
generator

3
g L
&
g,
Load

Figure 15.7 Load matching with a shorted single stub.(a) Stub connection and (b) type of

waves over a stub matched line.(a=13.2modified)

Let us consider a piece of loss-less line, with characteristic impedance, Z,, terminated
over a load, Z, # Z,. As the termination impedance is not equal to characteristic impedance,
reflected wave, most of the times unwanted, comes into being over to the line. To eliminate the
reflected wave, from a major portion of the line, several techniques are designed. One of such

g-line conductance ,b-line susceptance
lmx g1 g-:: 1 g<l g<1
1+ 1-ib
h=0—> =0 1+7b
Vlamin
gl g=1

L /4-lehi4 - e 24| 1id ) |=hid=]id]
le— 33— |

Wave amplitude —

/2 — e Af2—

«—A/2

Along the line —»
method is single stub matching technique, involving connection of a short circuited stub of
length, I to the line at a distance of ds from the load side end, as shown in Figure 15.3.



Figure 15.8 Normalized line admittance in the vicinity of a voltage minimumm and
maximum.

To understand the concept behind, consider a loss-less line and its normalized admittance in the
neighborhood of a voltage minimumm and maximum, as shown in Figure 15.8. At Vi, and at
Vmax Normalized line admittance is pure conductive, g at the former it is more than one and at
the later less than one. In between Vmin and Vmax at some point over the line, the conductivity
assumes a value equal to one and hence, surrounding Vmin there exists two such points where g
=1. As susceptance is positive on right side, negative on left side, the point on the right side can
be specified as 1+jb and that on left side as 1-jb. Also note that these two points, 1+jb are with in
a distance of A/2 from load.

A stub is connected at one of these two points, usually the one that is nearest to load, ds
selecting its length, Is such that its susceptance is equal to that of the line at that point but
opposite in sign, there by nullifying the line susceptance at that point. After stub connection,
normalized line admittance is 1, denoting that line is matched.

Two possibilities arise, one pure resistive termination and the other complex impednace
termination. Both are considered and analyzed.

Pure resistive load: The location of connection and length of stub are dependent upon the
impedances of line and load. The smallest possible distance, ds from the load side, where the stub
can be attached is given by,

A Z,

d, =—tan" |= (15.9)
2 o
The shortest possible stub length, Is is given by,
ZZ
I, _ A nz +tan™ Lo NGt (15.10)
2 Z.7,-2Z,

Here, when Z, > Z,, n assumes zero value and sign is + and for Z,<Z,, nis1and signis—. Zs
is Cl of stub and when it is made from the same line, Z,s = Z, . The above relations, in
Egs.(15.9) and (15.10), are valid only for purely resistive termination. The derivation of the
above relations can be found in one of the solved Examples.

Complex impedance load: Most general situation is the one in which the line termination is a
complex impedance. The relations, giving ds and [s, useful even for such a situations are
available and given below.

The smallest possible distance, ds from the load, where the shorted stub can be connected
IS given by,

b
2 H,J?ZJ?tan’lU—Znn
d. = 4r 2 2

S

(15.11)
ﬁ(@, FrEcos I —2nr)

Here, as b is the normalized susceptance of the stub, — b shall be that of the line at the
point of stub connection. The upper sign is to be considered for positive values of b and the
lower sign for its negative values. The angle, 8, denotes the angle of the RC over the load. The
integer, n can assume any value, positive or negative including zero, such that the distance of the
stub is within a one half wavelength. The shortest length of stub, Is can be found from,



i(ﬂ—tanllj forb>0
2r b
s = (15.12)
At L forb <0
2r |b|
The value of b in terms of RC magnitude, I', is
b=+ 2l (15.13)

-T2

Usually, I'y is given and from it b, ds and Is can be easily computed.

Now, the derivation of single stub technique relations pertaining to complex impedance
termination is considered. Let us suppose stub of susceptance b is connected at point P located
at a distance of ds from load. After the attachment of stub, the normalized line admittance, y at
connection point P must be equal to 1’ for matching. However, before the connection of stub,
the admittance of the line must be,

y=1-jb
And the corresponding RC I'y i.e. at P is
r :1—y= jb-
" 1+y 2-jb

It is already seen that, for a loss-less line, the RC over the load I'y can be expressed in terms of
RC over the line at the stub location, I', as

i ib ; b i(27/2+tan"Yb|/2+2 d+2n7
P r e = 0 g Bl ez )

2—jb V4 +b?
The phase of RC, I', is equal to phase of its numerator (+n/2) subtracted by phase of the
denominator (+ tan™ |b|/2 +2nx). In the above expression, the upper sign is to be considered for
positive values of b and the lower sign for its negative values and n can assume positive or
negative integer values. The RC magnitude, I'; over the load is,

bl

V4 +Db?

Solving Eq. (15.14a) for b results in Eq. (15.13). The phase angle of RC is,

I == (15.14a)

b
) =[i%itanlg+ 24, +2n7zj (15.14b)
. Hmgy]
Jimgy bd— - - — = I
bl 4ib-Z(2-b) (2-.jb)
jf? = I
s cos I X
a |
tan” (/2),
2 ReJl"
] Zib-Z(2- jb)
< T 4l
==——=tan —
2 2
b a ¥ =—m+cos T

(&)



Figure 15.9 Pertaining to derivation of single stub matching. For (a) positive b and for (b)

negative b.(13.3)

Solving Eq. (15.14b) for ds results in upper part of Eqg. (15.11). Using the information from
Figure 15.9, the location of the stub can be expressed in terms of RC, as given in lower part of
Eqg. (15.11). Once d; is available, length of the stub can be computed from the requirement of
nullification of line susceptance by the stub for matching i.e. cot gl = —b. Solving this equation
results in an expression for Is as Eq. (15.13). The I can also be expressed in terms of I, using Eq.
(15.13) in Eq. (15.12). In the above relations, 8, represents the angle of the RC over the load and
Il is the magnitude of the RC (magnitude of the RC over a loss-less line remains same
independent of the location).

An important aspect of stub matching technique is the existence of reflected wave over
various portions of line, in between source and the load. The reflected wave is absent only in
between source and the point, where the stub is connected. However, it exists over the line in
between point of stub connection and the load, incurring reflection losses, which depend upon
length of line under reflected wave. And, the relation for stub location, available in Eq.(15.9)
gives several points over the line, but to have a smallest possible line length under reflected
wave, it is advisable to select a point which is nearest to the load.

The chief drawback of single stub technique is its narrow bandwidth. With change in
frequency, the length and location of the stub has to be changed and it is the change of the
location of the stub that is more troublesome. Another disadvantage is in the final adjustment the
stub, which requires a very minute movement over the line. This is not possible for coaxial lines,
resulting in ultimately an inaccurate matching.

To overcome these disadvantages, instead of one, two short circuited, position fixed stubs
whose lengths are adjustable, independently, are used. The distance of the nearest stub from the
load and the inter-stub distance is normally is either A/4 or 3A/8. The distance between the
farthest stub and load, should be as small as possible so that a minimum possible length of line
under reflected wave, incurring least amount of reflection losses.

Example 15.12: Derive the expressions for stub length and stub position when the load is pure
resistance.
Solution:

Consider a loss-less line i.e. with pure real characteristic impedance Z,= |Z,| =Z,
terminated over a pure resistancei.e.Z;= |Z)| =Z,. Let us suppose stub is connected to line at point
P which is at a distance of ds from the load end. The normalized line impedance at this point is,

i_éz,+jzotanﬁds _z,+ jtan Bd,

Z, Z,Z,+jZtanBd, 1+ jz, tan Bd,
The corresponding normalized admittance is,
1 1+jztanpBd, vy, + jtan Bd,
z, z+jtanpBd; 1+ jy tanpBd,
Let it be g' + jb" and now, rationalizing y, gives,
_ Y, +jtan Bdg 1- jy, tan Bd,

P 1+ jy, tan Bd, 1 jy, tan Bd,
y, (1+tan® gd, )+ j(1- y7)tan Bd,

(1+ 7 tan® Bd,)
By equating the real and imaginary parts results in

p




y, (1+tan® Bd, ) y (1-y7)tan Bd,

~(1+yf tan’ pd,) ~(1+yftan® pd,)
If the normalized admittance y, is made unity, indicating a match, then reflected wave over the
line left of the point P disappears.The parameter y, can be made unity i.e. y, = g'=1by proper

selection ofds. The distance ds of the point Pfrom the load end which makes g'=1can be found
from,

_y(2+tan® d,)

- =1— vy (1+tan? gd_)=(1+ y?tan® pd
(1+y|2tan2,3ds) yl( ﬁ s) ( yl ﬁ s)
Solving this relation for d; results,
tan’ Bd, (¥, -7 ) =1-,
tanzﬁds=—l_y' 1.z — Bd, = gy
Y (1_ y|) Y Zo ” 0
Ultimately it results in an expression for ds as,
d, et
2r Z

The length of the short circuited stub which nullifys susceptance b'of the line can be found from
the fact that, for nullification, its input admittance must be equal to —b" .Assuming that the stub
has characteristic impedance equal to that of the main line, the input admittance of a short
circuited stub of length Iis pure susceptance equal to,

z| -z.-7 Z + j.Z0 tan SI,
4=0 Z,+jZ tanpl |,

The normalized admittance of stub, y_ can be found as,

= jZ, tan pl,

Y. =Zi=—on cot gl -y, =—jcot Sl

SC
sC

For nullification, the normalized admittance of stub, y_ = —jb’. Hence,
(1-y7)tan Bd,

(1+ 7 tan® Bd,)

Substituting tan® 8d, = z, in the above relation

NS N NG

COtﬁls_ (1+y|22|) - (1+y|)

@@ E

o (l+y.) _(l yl)\/_l

:( ~Yz)z =(2-1)2 /2,

= ZI_ /\/T: |/Zo_ /m

cot Bl =




_ (ZI _Zo)
JZ,Z,
Solving the above equation for I gives
tan gl =—“Z'ZO — _ A nz+tan™ VAL,
(ZI —ZO) 27 (ZI —ZO)

In the above expression, nz is used as tan is periodic with 7, and, as the requirement is shortest
length, when Z, > Z,, n assumes zero value and sign is + and for Z,<Z,, nis 1 and sign is —.

When the stub used has different characteristic impedance, Z,s the input susceptance of the short
circuited stub is equal to—Y,s cotsls. If b' is the normalized susceptance then the susceptance of
line at the stub connection point becomes Y,b'. Thus, for matching,
1-y/)tan pd,
Y, cotpl =Y ph' =Y, ( yz, ) > 5

(1+ 7 tan® Bd, )
Y, (1— y,z)tan Bd,
Y, (1+y7 tan® Bd,)
Substituting tan’Ads= Z, /Z, =z, in the above relation and then solving for Iresults in

yav4
I, _ A n;ritanflﬁ—' 0
2 Z, (ZI —ZO)
Example 15.13: A loss-less line, working at 100MHz with & =2.1 and = 1, is to be matched to
its load by means of a short circuited stub. Find the stub position closest to the load and its

shortest length so that match is achieved when the characteristic and load impedances are (a) Z,
=50Q, Z;=100Q and (b) Z, =100, Z, =50Q.

cot gl =

Solution:
The wave velocity is,
8
¢ 310 _ =2.07x10°m/sec
\/8 uo V2.1

The wave length, ratio of wave velocity to frequency, is
A =2.07x10"/100x10° = 207cm
(a) The distance of stub, ds from the load end can be obtained as,

=—tn / ! 207 tan™ /%=32.9x0.955=31.47cm

In thIS case, Z, < Zj, and hence, stub length, Is can be found as,

77 J
| =2 tant NG 207,04 V10050 _ o5 4. 0.955 - 31.47cm
oz -z 27 " T100-50

(b)The distance of stub, ds from the load end, can be obtained as,

=_t 4 207 tan " |22 =32.9x0.6154 = 20.28cm
Z, 100

In thIS case, Z, > Z;, and hence, stub length, Is can be found as,




| = zi{ﬂ _tan [ V24 Z H 207 |:7z —tan™ [—VSOXNOH =103.5-31.47 = 72.04cm
T

Z-72, || 2n 50100

Example 15.14: A loss-less 75Q line with insulation dielectric constant, £=2.25, is matched to a
load of 100Q2 at 200MHz by means of a parallel shorted stub. Determine (a) length of stub and its
position nearest to load. If the frequency is changed to 250MHz, without altering the circuit in
anyway, find the (b)VSWR on the main line

Re-work the problem, when CI is 100 and load impedance is 200€2.

Solution:
Wavelengths corresponding to 200 MHz and 250 MHz are,
8 8
_ 3x10 1m & P 3x10 _
200x10°+/2.25 250x10°+/2.25

Distance and Iengths of the shorted parallel stub are,

=_tan [ ——tan ‘/10 =13.64cm

| = ﬂ,t VLiZ, —itan 1 v100x 75
P 2r¢ Z-Z, 2r 100-75

After altering the frequency, the line impedance at stub conncted point is,

=20.50cm

Bd, = 2; =%><01364 1.071 & tan Bd, =1.83
Z +Z, jtan gd 100+ j75x1.83

Z, , =2Z,=——°= ==75 - =64.432-0.24
' Z,+Z, jtan fd, 75+ j100x1.83

The input impedance of stub is,

B, =27”|S =%x0.205 =1.61 &tan Bl, =—25.45

Z,. = jZ, tan Bl = j75x(~25.45) =1908.75/ —1.57

The effective load impedance on the main line is parallel combination of line impedance and
stub impedance. Hence,
Z=Z,,Z,,=64432-0.24||1908.75/ -1.57 = 63.882 -0.27Q

The RC over the effective load impedance, and SWR over the line are,
_Z/-Z, 63.88£-027-75

= 0 = =0.158/-2.11
Z +Z, 63.88£-0.27+75
_1+I" 1+0. 158_1.37
" 1-T 1-0.158

When Z,=100Q and Z;=200Q, stub length and distances become, 1s=15.20cm, ds=15.20cm with
SWR =1.56

Example 15.15: A loss-less line of Cl Z, = 60Q is to be matched to the load of 30Q2 by means
of a short circuited stub of same CI. Determine, using both sets of formulae, the stub position
closest to the load and its length to obtain match.

Solution:

The termination is pure resistance. The distance of stub, ds from the load end, can be found as,



d =2 tant L= L gt /@ =0.0981
2 Z, 2n 60

The stub length, I can be found as

Nei J
] :21{,, _tan [_'H :i{ﬂ _tan” [MH ~0.50-0.1522 = 0.3474
T

Z,-Z, 2n 30-60
The above results can also be obtained using general relations. For the given values, RC over
load can be found as,
T = 272, 30760 1 433,
Z,+Z, 30+60 3

Susceptance of the stub can be obtained as,
N 2x0.333 _ 10706

w/ ,2 J1-0.333°

Distance of stub from load, can be computed as,
A T -, 0.706 J
d. = - an ——-2nx

TF—Ft
2

=(0.2570.12550.027-0.5n) 1

_](0.098-0.5n) 4 forb >0
~ (0.402-0.5n) 4 forb<0

In the above expression, a value for n should be selected such that the distance is within one half
wavelength. In the present case, the appropriate value is zero. Hence,

B 0.0984 forb>0
*10.4022 forb <0

The smaller one of the above two is 0.098A which happens when b > 0. The length of the stub,
for such case can be found as,

I __* tan’1L +}L /1( 0956)+£—0347A
2 2r 2

S

° 2r 0.706
Notice, both sets of formulae give the same result.
Example 15.16: A loss-less 60Q line is to be matched to a complex impedance load by means of
a short circuited stub. Given that stubs are made from the main line and complex impedance load
(@) Z= (12— j24)Q and (b) Z;= (12+j24)Q. Determine the stub position closest to the load and its
length so that match is obtained.
Solution:
Given that stubs are made from the main line, and hence, their Cls is same as that of main
line.Here the load is complex and the the required quantities can be found as follows:
(@) Z=(12-j24)Q
For the given values, RC over load,
Z-Z, (12— j24)-60
' Z,+Z, (12-j24)+60
Magnitude of the coefficient, I'; and its phase, 6, are 0.707 and —2.356 rad. Susceptance of the
stub can be obtained as,

=0.707£-2.356



2T, 2x0.707

—
J1-T?  1-0.7072

Distance of stub from load can be found as,
d = i(—2.356111 tan! 200 2n7rJ
* 4r 2 2
= 2(-0.1870.125%0.0625-0.5n)
(-0.3745-0.5n) 1 forb>0
- { (0.0005-0.5n) 4 forb <0

In the above expressions, appropriate value for n is —1 for b>0 and 1 for b<0. Thus, distance of
stub from load is,
g 0.12554 forb>0
° {0.49951 forb<0
The length of the stub, for each case can be found as

b=+ =+2.00

i 7z—t<':1n71£ Zi(ﬂ—0.464)=0.426ﬂ, forb>0
2r 2 2

s —

i tan’li =i(0.464)=0.07381 forb<0
2 2 2r

Closest postion and corresponding length of stub are, 0.1255X and 0.426A.
(b) Z = (12+j24)Q
For the given values, RC over load,
Z,-Z, (12+j24)-60
' Z,+2Z, (12+j24)+60
Magnitude of the coefficient, I’} and its phase, 6, are 0.707 and 2.356 rad. Susceptance of the
stub can be obtained as,

bt 2l . 2x0.707 4200

Ci-rr T i-o707
Distance of stub from load can be found as,

A T 2.00
d =—|2356F=Ftan ' =——-2n
4 ( ot 2 ”j

=0.707.£2.356

° T
=(0.1870.12550.0625-0.5n)
~ [(-0.0005-0.5n) 4 forb >0
| (0.3745-0.5n) 24 forb<0

In the above expressions, appropriate value for n is —1 for b>0 and 0 for b<0. Thus, distance of
stub from load is,

S

{0.4995/1 forb >0

0.3745 forb<0
The length of the stub, for each case can be found as



i(n ~tan™ %j: 2 (7-0464)=04262  forb>0

| - 2 2
i tan’1£ :i(0.464)=0.07381 forb<0
2 2 2r

Closest postion and corresponding length of stub are, 0.3745X\ and 0.0738A.

Example 15.17: A 50Q loss-less line is to be matched to a complex impedance load by means of
a short circuited stub. Given that stubs are made from the main line and complex impedance load
Zi= (30- j40)Q. Determine the stub position closest to the load and its length so that match is
obtained.
Solution:

Given that Z, = 50Q and Z, = (30- j40)Q. Substituting the given values, one can obtain, the RC

over load as,

r Z-Z, _ 30— j40-50
' Z,+Z, 30-j40+50

Magnitude of the coefficient, I'y and its phase, 6, are 0.5 and —1.57 rad. Susceptance of the stub

b— 2l . 2x0.5 _ 41155

+ =+
JI-TZ2 J1-05°
Distance of stub from load is,

=0.52-1.57

A w 1.154
d, =—| -1.57F=—Ftan ' ==——-2n
s 4”_( + 2 + 2 ”J
4i(—n—0523—2nn) forb >0
_ T
)
—(0.523-2nr) forb <0
ar
| (-0.292-0.5n) 4 forb>0
~ |(0.042-0.5n) 4 forb <0

In the above, the values for n are —1 for b > 0 and zero for b < 0, resulting in a distance of
less than one half wavelength.

(0.208)2  forb>0
(0.042) 2 forb<0

The length of the stub for such case is

d:

S

i(ﬂ—tan1 1 j—i(ﬂ—0.714)=0.3861 forb>0

27 1.154 ) 27
A tan*1L :i(0.714)=0.11361 forb<0
2 1.154 2

Closest postion and corresponding length of stub are given by 0.041A and 0.1136A.



Example 15.18: A 50Q transmission line, working at 0.5 GHz, having a wave velocity,
v=1.5x10% m/s is terminated on an unknown impedance. It is found that, VSWR is 4 and the first
minimum is formed at 2cm from the load end. Design a single stub impedance matching for the
given conditions.
Solution:
The wavelength corresponding 1 GHz frequency, assuming wave velocity equal to free space
velocity, is A=v/f=1.5x10'%0.5x10°=30cm. To find the distance and length of the stub, it requires
the magnitude of RC and angle of RC over the load. These two parameters can be obtained from
the given data as follows.

_p-1 -1_4-1_

p+1 441
6,-2pd . =-m—>6,=2pd

min min

0, =2><2—><2—7r =2><2—><2—7z =—-0.73r rad
A 30

Magnitude of the coefficient, I'j and its phase, 6, are 0.6 and —0.73= rad. Now, the susceptance of
stub can be obtained as,

,/1 r? Ji—06® 08
Distance of stub from load can be found as,

A T 15
d == | -0.73zF=Ftan*==—-2n
: 4;;( TS ”j

i( 1.2371—0.643—2n7r) forb>0

Ar

i( —0.237 +0.643—2nr7) forb <0

Ar
| A(-0.359-0.5n) forb >0
| A(-0.006-05n)  forb<O

In the above, appropriate value value forn is-1.
~ { 0.1411 = 4.23cm forb>0

~10.49424 =14.82cm forb<0
Now, the length of the stub can be computed as,

i(n —tan ij forb >0
2r 15

| =
i(tan1 ij forb<0

S

2r 15
i(71 —0.588)=12.19cm forb>0
_J2rm
~(0588)=281em  forb<0
T

Closest postion and corresponding length of stub are given by 4.23cm and 12.19cm.



15.2.3. Double stub matching

In certain situations, single stub matching is difficult to implement, particularly in case of
coaxial lines, where it is just not possible to place the stub physically over the line in an ideal
location. In double stub matching, two stubs are used whose lengths can be adjusted at will,
giving more degrees of freedom to the matching designer. The stubs can be connected as near to
load as possible and the lengths of the stubs are adjusted to get proper matching, as shown in
Figure 15.10.

Now, analytical expressions for susceptances, and from them, the lengths of stubs to be
connected to the line for matching purpose, are derived. Here, the inter-stub spacing is
designated by dss, distance of the near-stub from load by d, , the length of near-stub by I, and the
length of the far-stub by ls . After connection of the far-stub, the normalized admittance at its
point of connection must become unity, to achieve matching. If the far-stub susceptance is by,
then earlier to its connection, the admittance, y't and RC, I''t of the line at the point of its
connection are,

Y =1-jb, (15.15)
1-y’ ib

I, = e _ J_f (15.16)
1+y,  2- b,

d,<A2 d<if2__
et —

= —=-
- : 1 | Traveling . . Standing
Tnax:jfar Z,=Z.» Dz’ L7, wave Wave -
B Line 2
| Standing / Smﬂd:r// -
wave wave
@ @ Stub2 Stub]

Figure 15.10 Load matching with shorted double stubs. (a)Stub connected at 11' is near stub and
the one at 22' is far stub and (b) type of waves over various parts of the
system.(a=13.4modified)

Then, the RC of the line at the location of the near-stub becomes,

. jb .
Fn = F’fejﬁdss — J -f ejﬁdSS (15.17)
2— ]b,

The normalized admittance of the line at the point of near-stub location is,
1-T, 4-j(4b cos2pd —2bfsin2pd,)
YnZToT " 4—4b, sin2pd_ + 407 sin’ fd_

(15.18)

If the near-stub susceptance is by, then before its connection, the admittance of the line at the
point of its connection is,

1
1-b, sin2pd_ +b?sin? gd.,

y, =Y, - ib,



[ bZsin2Bd, —2b, cos2d,, b
. _
2—-2b, sin2pd, +2b?sin*> pd,, "

=g+ jb (15.19)
Equating the real parts of both sides results in
! =0, (15.20)

1-b, sin23d_ +b?sin* Bd.,
Solving this, Eq. (15.20) for by results in
) _sin2d,, +sin? 2d,, - 4(1-1/g})sin” 2d,,
T 2sin? Bd
cos Ad., J_r\/J/g,; —sin® Bd.,
B sin Bd

(15.21)

Double stub matching:
1. For double stub matching to be possible, the condition to be satisfied is
g, <1/sin® pd., .
2. Other wise increase dss by A/4s0 that the above condition is satisfied.

One can notice that the Eq. (15.21) cannot have a solution for b; when value of 1/sin°Bdss is less
than g'n. Hence, it is not possible to arrange matching for loads which results in such kind of
inequality. A simple technique by which this difficulty can be overcome is to increase the inter
stub spacing by a one quarter wavelength. However, if the value of 1/sin*gdss is more than or
equal to g',, then bs has two possible values. The corresponding values of by, are, then given by,

b? sin23d, —2b, cos2pd
b, =| — _ﬁ e [j =——b; (15.22)
2—-2b, sin2pd + 2b; sin” pd

Once by, and by are known, the lengths of the two stubs can be computed easily, as done in case of
single stub matching technique.

Example 15.19: For each set of the given values, (a) d, =0, dss = 3A/8 with z=0.3+j0.4, (b) dj
= M8 , dss = 3M/8 with z=0.5 and (¢) d, = M4, dss = 508 with z=2.5-}5.0, determine whether
double stub matching technique is feasible or not.

Solution:

It is feasible to achieve match with double stubs only when real part of input admittance of the
line section, from stub 1 location to the load, is less than or equal to 1/sin°8ds.

(a)Given, d, =0, dgs = 30/8 with =0.3+j0.4. With d, = 0, the tan Sd, becomes zero. It gives
v :(1+ jz, tan d, ) 11
" (z,+jtanpd,) z 0.3+j04

The real part of the admittance then is Re[yin] =1.2. Next, one can calculate the value of
1/sin*Bdss.

=12-j16

,Bdss=2—7r><ﬂ:3—ﬂ=0.757r—> - 21 =— 21 =2
A 8 4 sin® gd,,  sin“0.757




From the obtained values, as 1.2 < 2 i.e. Re[yin] <1/sin’Adss, double stub matching technique is

possible.
(b)Given, d, =M8 , dss = 30/8 with 2=0.5. With d, = A/8, then
tan fd, = tan2—7z><i —tanZ =1.
A8 4
It gives,

. = (1+ jz_I tan Ad,) _ (1+ j0._5) _08-j06
(z,+jtanpd,) (0.5+))
The real part of the admittance then is Re[yi,] =0.8. Next, one can calculate the value of
1/sin’Bdss.

2r 31 3x 1 1
=—X 7 5 =— > = 2

A 8 4 sin® gd,,  sin“0.757
From the obtained values, as 0.8 < 2 i.e. Re[yi,] <1/sin?Adss , double stub matching technique is
possible.
(c)Given, d, =14, dss = 5M/8 with 2=2.5-j5.0. With d,, = A/4, then

tan 5d, :tanz—ﬂxi=tan£—>oo.
A 4 2

It gives,

y (1+ jz,tan Bd,) _ [(1/tan Bd, )1+ jz, ]
" (z+jtanpd,) [(z/tanpd,)+]]
With tan fd, —o, the normalized input admittance becomes

VR CLa DYy,

in (j)
The real part of the admittance then is Re[yin] =2.5. Next, one can calculate the value of
1/sin’Bdss.
,Bdss=2—7r><%=5—ﬂ=l.257r—> - 21 =— 21 =2
A 8 4 sin® Bd,  sin“1.25x
From the obtained values, as 2.5 > 2 i.e. Re[yin] >1/sin*8dss, double stub matching technique can
not be applied.

15.3. SMITH CHART

Smith chart is the best known and widely used graphical aid in solving transmission line
problems. It was developed in 1939 by Phillip Hagar Smith(1905-1987), an electrical engineer.
He obtained BS degree in 1928 from Tufts College and when working for Bell Labs, he
developed a polar plot of complex RC with the normalized impedance or admittance in a unity
circle, the now well-known as Smith chart. The real utility of this chart is that it can be used to
convert RC to its corresponding normalized impedance and admittances.
15.3.1 Smith chart features
The Chart is circular in shape, and it has two sets of curves: one set is of complete circles and the
other one consists of circular arcs. They are described in a little more detail below:

1. The complete circles are called constant resistance r circles or constant conductance g
circles. The centers of these circles lie over a horizontal straight line, passing through



10.

11.

12.

13.

center of the chart. These circles represent the normalized resistance/conductance at
various points over a loss-less transmission line of one half wavelength long.

There is a horizontal straight line, dividing the chart into two, upper half and lower half,
and passing through center of the chart. The center point is designated as '1', on the left
side with values less than one, upto zero and on the right side with values more than one,
upto infinity.

The circular arcs are called constant reactance x arcs or constant susceptance b arcs.
These arcs lie on both sides of the horizontal line. They represent values of the
normalized reactance/susceptance at various points over a loss-less transmission line of
one half wavelength long. The horizontal line denotes zero reactance and susceptance.

The two sets of curves, one set of complete circles and one set of circular arcs, form two
different families, and they are mutually orthogonal i.e. the circles and arcs are always
orthogonal to each other. Also note that all the curves of both the sets, pass through the
rightmost point of the chart, representing, I',=1, I'; = 0.

The chart can be used either as an impedance chart or as an admittance chart. When used
as impedance chart, the circles denote resistance and arcs represent reactance. However,
the same circles denote conductance and same arcs represent susceptance, when it is used
as admittance chart.

Movement from left to right, over the chart, corresponds to circles of decreasing radii,
denoting the increasing in resistance/conductance. The largest circle at the border of chart
denotes a resistance/conductance of zero.

The horizontal line divides the chart into an upper half and a lower half. The upper half of
the chart denotes positive reactance/susceptance i.e. normalized inductive
reactance/capacitive  susceptance whereas the lower half represents negative
reactance/susceptance i.e. the normalized capacitive reactance/ inductive susceptance.
The chart can also be divided as left half and right half. In the left half,
resistance/conductace values and reactance/susceptanace values are less than one. In the
right half, resistance/conductace values and reactance/susceptanace values are more than
one

The chart can represent the line impedance only for one half-wavelength long. However,
as the line characteristics are periodic with a periodicity of one half-wavelength, the chart
can be made use for any length of line.

The chart can be used only with normalized quantities i.e. normalized impedances/
admittances. The normalization is with respect to the load impedance.

In the upper half of chart, clockwise movement corresponds to increase in inductive
reactance/capasitive susceptance whereas in the lower half, clockwise movement
corresponds to decrease in capacitive reactance/inductive susceptance.

The movement, on the line, towards the generator corresponds to clockwise motion on
the chart and towards the load corresponds to anti-clockwise motion.

The horizontal radius to the right of the chart centre corresponds to voltage maxima,Vmax
current minima, Inin impedance maxima, Zmax and SWR, p and left of the chart centre
corresponds to voltage minima, Vi, current maxima, Imax impedance minima, zmi, and
inverse SWR,1/p. Also the location of Viaxcorresponds to zmax= p on the line and that of
the Vmin corresponds to a point of zmin=1/p .



14. Radial lines represent loci of the constant line angle, Sz. In the chart, wavelength scales
corresponding to the line angle are included around the outside edge of the chart.
15. For a lossy line not terminated in its characteristic impedance the path of travel on the
chart from the load to the generator is a decreasing logarithmic spiral.
Theory: The normalized impedance, z and RC, I" at any arbitrary point over a loss-less line are
related through,
1+T
7=—
1-T
Both the impedance and RC are complex, having real and imaginary parts. Let z =r +jx and I'=
I'+jTi . Then the above relation can be written as,
1+T, + T,
1_Fr - JFI
After multiplying the numerator and denominator of the right hand side of the above equation
with conjugate of denominator, equating real parts on both sides of the equation results in,

1-T2-17

(15.23)

r+ jx=

r=—— i (15.24a)
(1-T,)" +T?
And, equating imaginary parts on both sides of the equation results in,
‘= 2—r2 (15.24b)
(l_ I_‘r ) + 1—1i2
These two equations can be rearranged as
2 2
r, —Lj iT?= (LJ (15.25a)
1+r 1+r
1Y (1Y
(T, 1)+ (ri ——J = (—j (15.25b)
X X

16. One can notice that these two expressions, Egs. (15.25a&b), represent circles on complex
RC plane. The first one represents a family of constant resistance circles with radius
1/(1+r) and centre at r/(1+r) along the real axis. The second one represents a family of
constant reactance circles with radius 1/x and centre at I',.=1, I'i=1/x. The salient features
of the Smith chart are illustrated in Figure 15.11.
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Figure 15.11 Illustrating formation and salient features of Smith chart.(13.5and
13.7modified)

A chart that is used in practice is given in Appendix. To make use of the chart effectively,

all its features are required to be known. One among them is about 'constant SWR circle' which
is elaborated below:

1.

2.

o1

15.3.2.

The ‘constant SWR circle’, also known as 'constant p circle’, is a circle drawn on the chart
with SWR as radius and '1' of the horizontal line as centre.

The impedances represented by various points over the SWR circle denote the impedance
of line at various points within a length of A/2 .

Distance along the line is represented by angular distance around the chart, total
circumference or 360° corresponding to the line length of /2.

The point at which the constant SWR circle intersects the horizontal straight line, right
side of center, corresponds to SWR of the load.

For each different value of SWR, there exists a separate circle with a different radius.
Constant SWR circles are concentric circles, with centres over '1', having different radii
representing different SWR values. These circles intersect horizontal line at points,1/p
and p, representing impedances equal to Z,/p and Z,pwhere Z, is characteristic impeance

Smith Chart Utility
Smith chart can be used to find a variety of quantities of transmission lines without doing

complex computations. Some of them are mentioned below.

e VVSWR over the line: To find VSWR over the line, first normalize the load impedance with
characteristic impedance, Z, of the line and let it be r + jx . Now locate this impedance over the
Smith chart at a point, where circle of r and arc of x intersect and let it be at P, as shown in
Figure 15.10(a). Now, draw VSWR circle, with center, O and radius equal to distance between P
and O, O being center of the Chart. This circle cuts 1-co segment of horizontal line of chart, and
let it be Q. Identify the circle that passes through this point Q and its r value gives required
VSWR.



e Location of voltage maximum and minimum: First of all, normalize the load impedance with
Z, of the line and locate this impedance over the Chart at a point P(say). Draw a radial vector
joining center of chart O with point P. Next measure angles made by this vector, clockwise, with
1-o segment and 1-0 segment of horizontal line of the Chart, 6; and #, as shown in Figure
15.10(b). These angles when divided by p give distance, in mts, of first maximum and first
minimum from the load.

SWER circle SWR circle
F
0 0'1 [¢) o0 e/ ¢
&,

(@) ()

Figure 15.12 SWR, location of first mximum and minimum.

e RC over load: To find RC over the load, first normalize the load impedance with Z, of the line
and let it be r + jx . Now locate this impedance over the Smith chart at a point, let us say, at P.
The distance of this point P to center of chart O gives magnitude of RC. To find angle of
coefficient, draw a radial vector, from O to P and the angle made by this vector, clockwise, with
1-0 segment of horizontal line of chart gives required angle, 61 as shown in Figure 15.11(a).

SWR circle

N/

@ ®)

Figure 15.13 RC and impedance computation.
e RC at a distance from load: Let us suppose, RC is required at a distance of | from load. First
normalize the load and locate the normalized load over the Smith chart, let us say at point, P.
Now draw constant SWR circle passing through P and rotate the radial vector OP clockwise an
angle, I moving the load point to another location, Q on the circle.
The distance of this point Q to center of chart O gives magnitude and the angle, clockwise, made
by radial vector, from O to Q, with 1-o0 segment of horizontal line of chart gives angle of RC at
a distance | from load, 8, as shown in Figure 15.11(a).
e Impedance at a distance from load: Let us suppose, impedance required is at a distance of |
from load. First, locate the normalized load over the Smith chart, let us say at a point, P. Now

SWR circle

0 oy



draw constant SWR circle passing through P and rotate the radial vector OP clockwise an angle,
Sl moving the load point to another location, Q on the circle.

Now, identify r and x values of circles/arcs passing through point Q, which gives the normalized
impedance over the line at a distance of | form load. By multiplying normalized impedance with
Z, of line then gives the required impedance in ohms. This process can also be used to identify
the type of load at any point over the load.

15.3.3. Single Stub Matching

The location and length of the stub to be placed over the line for matching purpose can be

calculated using Smith chart. The procedural steps to be followed are given hereunder.
e Plot the normalized impedance and draw the constant SWR circle on Smith chart.
e Move a distance of A/4 along the constant SWR circle to locate load admittance. Let it be P;.
e On the SWR circle nearest to the load admittance point locate a point, which represents
admittance 1xjb. This is the point of intersection of constant SWR circle and r =1 circle. Let it
be P,.
e Read the distance between P, and P, using the scale provided at the circumference of the
chart. This gives the distance in wavelengths where the stub has to be placed from the load.
e Starting from the point, (e, joo), find the distance of the point at which the susceptance is jb.
This gives the length of the short-circuited stub in wavelengths to be connected for matching.
15.3.4 Double-Stub Matching

Single stub matching is impractical when the stub is not being able to be placed
physically in the ideal location. Particularly, in case of coaxial lines, it is very difficult to place
the stub at the exact required location.

In double stub matching, the stubs are connected as near to load as possible and the
lengths of the stubs are adjusted to get proper matching. For the sake of convenience, let us call
the stub that is nearest to the load as near-stub and the other one as far-stub. The spacing between
the stubs is usually either A/8 or 3A/8 or 5A/8 but most often it is A/4. The spacings of A/2 is
avoided, because it places the two stubs in parallel resulting in the availability of only single
effective adjustment. The close spacing of the stubs is also avoided for the same reason. Now,
the elements of double stub matching with Smith chart are briefly given.

Spacing circle: It is a circle obtained by rotating the constant conductance circle g = 1
around the center of the Smith chart. The amount of rotation depends upon the spacing of the
stubs. For a spacing of either A/8 or 5A/8, the amount of rotation is 90° anti-clockwise and in
case of 3\/8, the rotation is 90° clockwise. If the spacing happens to be A/4 then the amount of
rotation is 180°.

To understand the significance of spacing circle, the line in between the stubs has to be
viewed as a transformer, converting the admittances at far-stub location into different admittance
values at near-stub location. The admittance of the line at far-stub location is 1xjb and, therefore,
the constant conductance circle, g = 1describes these admittances. The admittances the location
of near-stub then can be sketched over the Smith chart by moving the admittance points along
constant SWR circles by angle corresponding the length of the transformer. If all the admittance
points at the location of stub 2, are joined, it also results in the so called 'spacing circle'.

Forbidden region: The double stub matching technique does not work for certain values
of load admittances. The region of the Smith chart that represents all these values of load
admittances which are not amenable for this technique is called ‘forbidden region'. The region
basically depends upon the spacing of the stubs. When the first stub is right over the load, and for
a stub spacing of either A/8 or 3A/8 or 5A/8 the forbidden region consists of the entire area



encircled by constant conductance g = 2 circle. If it is equal to A/4, then the forbidden region is
the entire area encircled by constant conductance g = 1 circle.

Location of stubs: For reflection-less operation of line, the input admittance of line
looking towards the load at far-stub location shall equal to the characteristic impedance. Or at the
location of the far-stub the real part of the admittance of the line is required to be one. The far-
stub is used to cancel the imaginary part of the line admittance at its location resulting in
normalized admittance of one.

It is always desirable for the near-stub to be connected at or near to the load. But it is not
always possible to have such a connection because of the existence of forbidden regions.

Functioning: Stub 1 transforms the input admittance of the line and load to the right of
its location into an admittance which lies over the spacing circle. The line transformer further
transforms this admittance into a value which lies over unity conductance circle. The susceptance
of the line at this point is tuned out using stub 2.

Procedural steps:

Step I: Locate the normalized admittance over the chart. Let it be P.

Step Il: From P move clockwise over constant SWR circle, a distance corresponding distance of
the first stub from the load. Let the point be Q. If the first stub is to be placed right over the load,
then this step becomes redundant.

Step I1l: From Q move over constant g circle until spacing circle is met. Let the point be R. In
case of two possibilities i.e. clockwise and anti-clockwise either one can be selected. From the
susceptance value of the point R, the length of the first stub can be calculated.

Step IV: From R move over constant SWR circle until g = 1 circle is met. Let it be S. From the
susceptance value of the point S, the length of the second stub can be calculated. Note that the
SWR circle in the present step is different from that of step II.

Example 15.20: Using the Smith chart, determine VSWR p, the location of the first V.« and
first Vmin from the load, when the line is connected to a normalized impedance, equal to (2+j2)Q
and functioning at an operating wavelength of 6cm.

Solution:

0.207

(&)

Figure 15.14 Illustrating Smith chart operations pertaining to Example 15.20. (13.9)
The solution procedure involves several steps which are explained here in a detailed manner,
with reference to the Figure 15.14.
The normalized impedance is given. Locate this impedance on a Smith chart and let it be
designated as point P.



With center of the chart as center and center to point P as radius, draw the constant SWR circle.
The constant SWR circle cuts the horizontal line of the chart at two points, one on left of the
center P, and the other on the right of the center P,. The point on the right of the center gives the
SWR over the line. From the chart, it is 4.4.

From point P read the angular distance in clockwise direction over the SWR circle to P, and P,
and convert them into linear distances. The first one gives the distance of the first Vmi, and the
second one gives the first Vimax and from the load. From the chart they are 0.293A and 0.043A
respectively.

Example 15.21: A 50 Q transmission line is terminated over a load of impedance (100+j50)Q2.
Using the Smith chart, determine (a)VVSWR p,(b)RC,(c) distance of voltage minimum from the
load, (d) line impedance at a distance of 0.15A form the load(e) line admittance at a distance of
0.15X form the load and (f) the location of the nearest point to the load where the real part of the
line admittance is equal to the line characteristic admittance.

Solution:

The solution procedure involves several steps, which are explained here in a detailed manner,
with reference to the Figure 15.15.

£ =06+065

g =1rircle

(53

Figure 15.15 Illustrating Smith chart operations pertaining to Example 15.21.(13.8)

e The load impedance and characteristic impedances are given. The normalized load
impedance is,
, 100+ j50

2+ 1
I 50 J



Locate the normalized impedance over Smith chart and with 1 as center and from 1 to the point
representing the normalized impedance as radius, draw the constant SWR circle. The circle cuts
the real or horizontal axis at two points. The value against the point right of the center is SWR.
From the Smith chart operation, as shown in Figure 15.15(a), SWR is found equal to 2.32.

From the horizontal scale provided over the bottom of the chart, RC can be computed. As shown
in Figure 15.15(b), it is 0.48.

The distance between the load point to the point of intersection of real axis and SWR circle on
the left side of the center can be read using the scale provided over the periphery of the chart.
The load point location is 0.212 and the voltage minimum point is 0.50. Therefore the distance of
the first voltage minimum the load is 0.50-0.212=0.288 times wavelength. It is shown in Figure
15.15(c)

The required line impedance can be found by moving a distance of 0.15\ over the SWR circle in
clockwise direction. The point represents normalized impedance of z;=(0.82—-j0.7). The absolute
impedance, shown in Figure 15.15(d), then is Z4=50x%(0.82—j0.7)= (41-j35).

Locate the point over the SWR circle diametrically opposite to the point located in the previous
step. It represents the required admittance. Its normalized value from the chart is y,=(0.6+j6.5).
The absolute admittance, shown in Figure 15.15(e), then is Y4=(0.6+}6.5)/50= (0.012+j0.13).
The distance of the nearest point to the load where the real part of the line admittance is equal to
the line characteristic admittance can be found by locating the load admittance over the SWR
circle and then finding the distance in clockwise between this point and the point of intersection
of SWR circle with g=1 circle. From the chart the load admittance point is 0.462 and the
intersection point is 0.16. the distance between them then can be found to be 0.198 times
wavelength. It is shown in Figure 15.15(f)

Example 15.22: Using the Smith chart, find the terminated impedance of a line of characteristic
impedance of, Z, =50Q having an SWR=3. When the load is shorted, the shift in minima is 0.24
towards the generator.

Solution:

The solution procedure involves several steps which are described below, with reference to the
Figure 15.16.

Figure 15.16 Illustrating Smith chart operations pertaining to Example 15.22. (13.10)

Take a Smith chart and with center of the chart as center and center to 3 over the horizontal axis
as radius draw the constant SWR circle.

The constant SWR circle cuts the horizontal line of the chart at two points, one on left of the
center P, and the other on the right of the center P..



The point P, corresponds to Vmin , and now move over the SWR circle from P, a distance
corresponding to 0.24 towards the generator and locate the load point. It gives the normalized
impedance and from the chart its value is z=(1.7+j1.3). Multiplication with Z, =50Q gives the
actual value of the impedance. It is Z,=50x%(1.7+j1.3)= (85+)65).

Example 15.23: Using the Smith chart, find the location and length of the short circuited stub
required for a line of Z, =50QQ when the normalized load admittance is (2+j1.75)U. The
characteristic impedance of stub is 100Q. .

Solution:

The solution procedure is a multi-step process, described below with respect to the Figure 15.17.

oo —» constant SWE circle
ge — g =1circle

Figure 15.17 Illustrating Smith chart operations for single stub matching pertaining
to Example 15.23. (13.11)

e The normalized admittance is given. Locate the normalized admittance on the Smith chart
and then draw the constant SWR circle.

e Onthe SWR circle nearest to the load admittance point locate a point, in clockwise direction,
which represents admittance 1+ jb. This is the point of intersection of constant SWR circle and
g=1circle. For the given data, from the Smith chart it is (1- j1.45)

e Read the distance between the points identified in the previous steps using the scale provided
at the circumference of the chart. This gives the distance in wavelengths where the stub has to be
placed from the load. From the chart it is 0.325-0.208=0.117 times wavelength

e Starting from the point («, joo), find the distance of the point at which the susceptance is
j1.45. This gives the length of the short-circuited stub in wavelengths to be connected for
matching. From the chart it is 0.404A.

Example 15.24: In a double stub matching scheme, the terminating impedance, Z, is (100—
j100)Q2 and the characteristic impedances, Z, of the line and the stub, both are equal to 50Q. The
first stub is placed at 0.051 away from the load. The spacing between the two stubs is (3/8)A.
Determine the length of the short-circuited stubs, when the match is achieved.

Solution:

The solution procedure involves several step which are described below, with reference to the
Figure 15.18.



From the given values of the load impedance and characteristic impedance, find the normalized
impedance. And then locate the normalized admittance over the chart. From the Smith chart, the
normalized admittance is (0.24+j0.25).

From the point located in the first step, move clockwise over constant SWR circle, a distance
corresponding distance of the first stub from the load. It is 0.05A in the given Example. The
admittance of the point reached, from the Smith chart, is (0.32+j0.6).

Draw the spacing circle of (3/8)A by rotating the constant-conductance unity circle (g=1) through
a phase angle of 25d= 2/(3/8)A=(3/2)x toward the load.

From the point located in the previous step move over constant g circle until spacing circle is
met. Now, two points are encountered, meeting this condition. These two points in general give
two different sets of lengths of the stubs. Here, only one point i.e. (0.32—j0.25) is considered and
solution lengths are found. The solution is similar when the other point is selected.

The difference in the susceptance values of previous two points has to be nullified by the first
stub. Here it is —j0.25-j0.65=—0.85. The stub susceptance has to be j0.85. From the chart the
corresponding length of the first stub can be calculated. It is 0.14A.

cc —» constant 3WWE circle
gc —g=1 circle

sc — spacing circle

Figure 15.18 Illustrating Smith chart operations for double stub matching pertaining to
Example 15.24.(13.12)
From the point located in the previous step i.e. (0.32—j0.25) move over constant SWR circle and
in clockwise direction until its corresponding point over (g=1)circle is met. From the susceptance
value of this point, which is j1.25, the length of the second stub can be calculated. It is from the
Smith chart 0.395\. Note that the SWR circle in the present step is different from that of second
step.




UNIT-1

TRANSMISSION LINE AT HIGHER FREQUENCIES
Assignment-Cum-Tutorial Questions

SECTION-A
1. The Smith chart can be characterized as [ ]
a) A Polar plot b) represents complex RC
c) Inscribed in a unity circle d) all
2. The complete circles and arcs in the Smith chart, respectively, represent [ ]

a) Normalized resistance/conductance, Normalized reactance/ susceptance
b)Normalized reactance/ susceptance, Normalized resistance/conductance
c) Normalized reactance, susceptance

d) none of these

3. The circles and arcs over the Smith chart are [ ]
a) Orthogonal b) Opposite to each other
c) At 45° d) None of these

4. The upper half and lower half of the Smith chart, respectively, represent [ ]

a) Positive, nagative reactance/susceptances
b) Capacitive, inductive reactance/susceptances

¢) Resistance, conductance d) None of these

5. The radius of the constant SWR circle isequal to [ ]
a) Voltage SWR b) Current SWR
c) Both (a) and (b) d) None of these

6. The centre of the constant SWR circle falls over [ ]
a) ‘1’of horizontal line b) centre of the chart
c) Both (a) and (b) d) None of these

7. In the left-half and right-half of the chart, resistance and reactance values, respectively, are

[ ]

a) More than 1, less than 1 b) Less than 1, more than 1
c)11 d) 0,0

8. The left most and rigtht most points of the chart, respectively, represent [ ]
a) (0,0), (c0,) b) (20,:0),(0,0),
c) (0,0), (1,2) d) (1,1),(o0,0)

9. The top most and bottom most points of the chart, respectively, represent [ ]
a) (1,1), (-1,-1) b) (-1,-1), (1,1)
c) (1,1), (0,0) d) None of these

10. Smith chart is always used with [ ]
a) Normalized impedances b) Normalized admittances
¢) Both (a) and (b) d) None of these

11. The Smith chart is useful to analyze [ ]
a) Loss-less lines b) lossy-lines
c) Both (a) and (b) d) None of these

12. The horizontal line left and rigth of the centre, respectively, represent [ ]
a) Vmax, Imax; Vmin, Imin b) Vmin, Imax; Vmax, Imin

C) Vmin, Imin; Vmax, Imax d) None of these



13. The movement towards load and towards source over the line, respectively, correspond to,

[ ]

a) Clock-wise, anticlock-wise rotation over the Smith chart
b) Anti-clockwise, clock-wise rotation over the Smith chart
c¢) Upwards, downwards d) None of these
14. Travel of length 1¢/2 over the line corresponds a rotation of [ ]

a) 180° over the chart b) 360° over the chart

c) 90° over the chart c) None of these
15. On the smith chart, full circles represents [ ]

A) Inductance B) Capacitance C) Resistance D) Impedance
16. The radius of the constant SWR circle is equal to [ ]
A) Reflection coefficient B) Transmission coefficient
C) SWR D) Normalized impedance
17. The centre of constant SWR circle falls over [ ]
A) Centre of the chart B) ‘1’ of horizontal line
C) both A and B D) None of these
18. The left most points of the smith chart represents [ ]
A) Generator B) Load C) Short circuit impedance D) Open circuit impedance

19. Equation representing circles is and that representing arcs of the chart is
20. Double stub matching is not possible when the load falls in region.
21. Over the Smith chart, full circles represent-----—------—----and arcs represent
22. Over the Smith chart, the upper half is~—--------—-—and lower half is
23. Smith chart uses only----------——--- and describe the line for
24. The centre of constant SWR circle is always the of the chart.
25. Vimax, Imin @and p correspond to half the chart and Imax, Vmin and 1/p
correspond to half the chart.

26. In single stub matching, length of stub is -~----------- and location of stub is

27. Define stub.

28. A stub can be shorted at one end. (yes/no)

29. If the vSWR=2, the magnitude of the reflection coefficient is [ ]
a) Ya b) 1/5 c)0 d) 1/3
SECTION-B

Descriptive questions
1. Explain construction of Smith chart. [C03]
2. Describe about the UHF lines at higher frequencies act as circuit elements. [C02]
3. Describe the method of single stub matching. Derive the relation for the length and
location of the stub. [C02]
4. What is mean by load matching? Explain Quarter wave transform technique. [C02]



5. Define matched line. What are the advantages of transmission over matched line?
Explain why a matched line does not carry reflected wave. [C03]

6. Explain the double stub matching. [C02]

7. Locate voltage max and min for pure resistive termination for a lossless transmission line.
[C02]

8. Describe the procedure of load matching with quarter wave transformer for different
types of loads. [C02]

9. Describe Smith chart and its salient features. [C03]

Problems
1. A loss-less transmission line with Ze=100 Q is 0.434 A long and terminated at an
impedance of 260+j180. Find (a) VSWR (b) Reflection Coefficient  (c) Input
impedance (d) Location of voltage maximum on the line. By using smith chart.
Assume the line is placed in free space. [C03]

2. Aload of 100+j150 Q is connected to a 75 Q (Zo) lossless line. Find (a) VSWR  (b)

Reflection Coefficient (c) Input impedance at 0.4 A from the load (d) the load
admittance (e) Location of Vmax and Vmin With respect to the load if the line 0.4 A long .
[C03]

3. A lossless line of 300 Q impedance is terminated with a load impedance of 100+j150 Q.
The frequency of operation is 60 MHz find the location of a single stub needed for
impedance matching. [C03]

4. A load such as an antenna of impedance Z = 50-j100 Q is connected to a lossless
transmission line with characteristic impedance Zo= 100 Q. The line operates at 300 MHz

and the speed of propagation on the line is 0.8*C. Find:
i. The reflection coefficient at the load

ii. The reflection coefficient at a distance of 20 m from load towards the generator
iii. Input impedance at 20 m from the load

Iv. The standing wave ration on the line

v. Locations of the first voltage maxima and the first voltage minima from the

load.[CO3]
SECTION-C
1. For pure reactance and pure resistance loads, load points over the Smith chart, respectively,
stay at, [ ]
a) At the periphery, over the horizontal line b) Over the horizontal line, At the periphery
¢) In the lower half, At the periphery d) In the upper half, over the horizontal line

2. For a match terminated loss-less line, the location of load point over the Smith chart is

[ ]



a) At centre  b) At periphery ¢) In the upper half d) In the lower half



Transmission lines and Waveguides(UNIT 1V)

A. Questions testing the remembrance/understanding level of students
I. Objective/Multiple choice questions
1. The cut-off frequency of wave in between parallel plane conductors is -
2. The cut-off wavelength of wave in between parallel plane conductors is ~-----
3. The phase shift constant for wave in between parallel plane conductors is ~-----
4. The phase shift constant for wave in between parallel plane conductors at cut-off is ~-----
5. The phase shift constant for wave in between parallel plane conductors at high frequencies
IS ~———

6. Transmissions lines carry waves in-—---— mode where as waveguides carry in—-—-—--— TEM
mode.

7. Pure real value of propagation constant indicates--—---- attenuation and------ wave motion.

8. Pure imaginary value of propagation constant indicates-—---- attenuation and--—-——- wave
motion.

9. In TE wave the electric vector is----- transverse to the direction of propagation of wave.

10. In TE wave the magnetic vector has------ component along the direction of propagation of
wave.

11. In TM wave the magnetic vector is entirely----- to the direction of propagation of wave.

12. In TM wave the electric vector has a------ along the direction of propagation of wave.

13. In TEM wave both the electric and magnetic vectors are entirely-—- the direction of
propagation of wave.

14. In mixed or hybrid wave, both the electric and the magnetic vector have components------
the direction of propagation of wave.

I1. Descriptive questions

1.  What is TE wave.

2. What is mode of wave.

3. What is principal wave.

4. Write cutoff frequency of wave in parallel plate transmission.

B. Questions testing the ability of students in applying the concepts
I. Multiple choice questions
1. Wave in guide travels through

(a) Guide walls (b) dielectric

(c) Both (a)and (b) (d) None

2. The propagation constant pure real implies

(a) Wave without attenuation (b) No wave motion

(c) Wave with attenuation (d) None

3. The propagation constant pure imaginary implies

(a) Wave without attenuation (b) No wave motion
(c) Wave with attenuation (d) None

4. The propagation constant complex implies

(a) Wave without attenuation (b) No wave motion
(c) Wave with attenuation (d) None



5. In TM wave, H can have component
a) Parallel to propagation b) Normal to propagation
¢) Both (a) and (b) d) None of these

6. In TE wave, H can have component
a) Parallel to propagation b) Normal to propagation

¢) Both (a) and (b) d) None of these
7. The lowest order TE wave in between parallel conducting plates is
(@) TE, (b) Principal wave.

(c) Both(a) and (b). (d) None

8. The principal wave is

(@) TM,, (b) TEM wave

(c) Both(a) and (b). (d) None

9. The nature of the wave normal to plates is
(a) Pure standing  (b) Pure traveling

(c) Impure traveling (d) None

10. The nature of the wave parallel to plates is
(a) Pure standing  (b) Pure traveling

(c) Impure traveling (d) None

Il. Problems
1. A parallel plate waveguide is having a dielectric medium with & =2.25 and ux =1.
Determine its spacing a when its dominant mode cutoff frequency is 5GHz.

Answers: 2cm
2. A parallel plate waveguide of spacing a= 4cm, is having a dielectric medium with & =4 and
ur =1. Determine the TE modes that can propagate when the frequency is 5GHz. Also find f.
and /g4 for each propagating mode.

Answers: m=1,2, f. = 1.875,3.75GHz, A4 =3.24,4.53cm
3. A parallel plate waveguide of spacing a= 5¢cm, is having free space medium in between. If it
is excited with fundamental 2GHz and its harmonics, determine all the frequencies that
propagate in TE;o mode.

Answers: 4, 6, 8GHz...... etc.

In an air-dielectric parallel-plate waveguide of spacing a= 5cm, TE modes are excited with a
ield distribution at its mouth given by,

E =157y (sin 207 x+0.35sin 607 x)sin10°zt V/m

5. Determine the propagating modes and deduce the expression for electric field of the
propagating wave.
Answers: TE,, ;E =157y sin 207rxsin[1097rt—(807r/3)z] V/im

6. A 4GHz wave is propagating in a nonmagnetic medium having a dielectric constant, &
=2.2. When the phase shift constant is found as 54° /cm, find the cutoff wave number.
Answers: 0.81rad/cm

C. Questions testing the Analyzing/evaluating/creative abilities of student

1.  Prove that the infinite parallel plane conductors act as high pass filter. Define the terms
cutoff frequency and cutoff wavelength.

2. What is the meaning of mode of the wave? Give a complete description of modal



propagation characteristics of waves in between infinite parallel plane conductors.
3. Define and differentiate phase velocity from group velocity.
4.  What are two types of attenuations that exist in waveguides? Write down general
expressions for both the types of attenuation.
D. Previous GATE/IES questions
1. Attenuation constant in Np/m due to conductor loss is
power dissipated/unit length b 2xpower flow down the guide

2xpower flow down the guide power dissipated/unit length
power dissipated/unit length

power flow down the guide
2. Reflective attenuation comes into being when the frequency of the wave is

c) None of these

a) Less than cut off frequency b) More than cut off frequency
c) Both (a) and (b) d) None of these



GUIDED WAVE ANALYSIS

Here, the field distribution in the region between two infinitely large parallel conducting
plates, in the presence of traveling wave, is investigated. This topic is important for more than
one reason. Parallel wire transmission lines, waveguides, and also coaxial lines are similar to
parallel plate systems, having certain common structural features and, in fact, all the above
mentioned electrical transmission systems can be derived from the parallel plate structure under
consideration.

This plate system is capable of supporting both TEM and non-TEM waves. When the
features that support TEM waves are accentuated, the structure becomes a parallel wire
transmission line and when features that sustain non-TEM wave features are enhanced, it results
in waveguides. Hence, analysis of wave guided by parallel plates give an indication of
characteristics of TEM and non-TEM waves, apart being a necessary prerequisite know-how for
the analysis of parallel wire transmission lines and waveguides. The methodology used, concepts
applied and results obtained from the analysis of this configuration can be used for benefit in the
study of, both, TEM wave carrying transmission lines as well as non-TEM wave carrying
waveguides.

12.1.1. Fields in between conducting plates

In this section, the relations connecting transverse components with longitudinal ones are
derived. Let us suppose the two conducting plates, infinite in extant, are parallel and one lying
exactly over the yz- plane and another at a height of a from the bottom plate as shown in Figure
12.2. Let us also suppose that there exists a wave, traveling in the positive z- direction in between
the plates. It is assumed that the plates are made with perfect conductors i.e. conductivity o of the
walls is oo and it is also assumed that hollow region is a perfect dielectric i.e. its conductivity, o is
zero.

FParallel conducting plates

—
Traveling wave

Figure 12.2 Parallel infinite conducting plates with traveling wave.(10.1 shaded)

The analysis is done in phasor domain i.e. time variations of the field quantities are
assumed exponential i.e. €” . When the time variations are exponential, the fields also vary in
exponentially along the direction of the propagation, according to transmission line theory. So
the fields must vary with z as e¥? where 7 is a constant, known as the propagation constant
which, in general, is a complex quantity, given by, y = @ +jg.

Its real part, @ attenuation constant, represents the attenuation the wave undergoes while
traveling and the imaginary part, 3, phase shift constant, denotes phase change in wave motion.
In the ensuing analysis, loss free conditions are assumed and hence, it is un-attenuated wave



transmission with a pure imaginary propagation constant, i.e. ¥ =jS. The 'bar' over the symbols
indicate that they refer to non-TEM waves.

In general, the fields are function of x , y, zand t. In the present case, however, the plates
are infinite in extant in y—direction. As there is no wave motion in that direction, the fields must
be constant in the direction, and hence, independent of that dimension.

If E and H are electric and magnetic fields at an arbitrary point, P in the hollow region,
they must be related through the Maxwell's curl equations, given by:

V xH = jocE ; V xE=- jouH (12.1)

In the analysis, it is aimed to find the fields E and H, which are vectors having all the three
components. The expressions for all the six components, E, , E, , E,, H,, H, and H, of the fields
are found, first by expressing the transverse components, E, , E, , H, and H, in terms of the
longitudinal ones, E, and H, . Then the longitudinal components are found by solving their
respective wave equations. The longitudinal fields, when expressed in terms of the transverse
ones, appear as follows:

y oH jowe OE
“ h* ox Y h®>  ox ( )
y OE . jou oH
=1 z ; E =4 z 122b
“ h* ox Y h? ( )
with
h? =7%+ o’ us (12.3)

Note that the relation in Eq. (12.3) is called characteristic equation. The constant, h also denoted
by k. , is called cut-off wave number. In the above relations, note that, all the field quantities are
functions of x only.

Proof: The fields E and H, at point P obey Maxwell's curl equations. In phasor form equations,
the fields are independent of time, t. If the z-variations of the field quantities are exponential,
then, one can replace 6/0z by — y. In addition, as there is no wave motion in y-direction, fields
must be uniform, resulting in 6/0y=0. Expanding the first one of Egs. (12.1) after considering
these two aspects, results in,

A A

X y 2
o/ox 0  -7|=jowe(XE, +JE, +2E,) (12.4)
H, H, H,

Equating field components on both sides of Eq.(12.4), one can obtain,
(12.5)

y

_ . OH, _ . oH .
yH, = JoeE, ; Y +yH,=-]wek, ; ™ = JowsE,
Similarly, by following same procedure, from the second one of the Eqgs. (12.1), another set of
three equations can be derived:

(12.6)

z

oE . oE .
+7E, = jouH,; — =—jouH
ox Y Ey = Joun, ox Joun,

}7Ey :_jw:uHX;

After combining second of Eqs.(12.5) and first one of Egs. (12.6) and then solving
them for Hy results in an expression which is first one in Eqg.(12.2a). In a similar manner,
expressions for other transverse components can be computed by considering one equation from
each set i.e., Egs.(12.5) and (12.6).



Several critical observations can be made with respect to relations in Egs.(12.3), which
are listed below.

One: With E; = 0, H; = 0, simultaneously, all the field components become zero
indicating that a wave with components entirely transverse to the direction of propagation i.e.
transverse electromagnetic wave, or TEM wave cannot exist in between the plates.

Two: With E; # 0, H, = 0, all the components are not zero indicating the possibility of
the existence of a wave with its magnetic vector entirely normal to the propagation direction.
This type of wave is called E-wave or transverse magnetic or TM wave.

Three: With E; = 0, H; # 0, there exist non-zero field components indicating possibility
of a wave with its electric vector entirely normal to the propagation direction. This type of wave
is called H-wave or transverse electric or TE wave.

Four: With E; # 0, H; # 0,the wave can exist in the guide, as all the field components
are not zero. This type of wave is called hybrid or mixed wave.

The next step of the solution procedure involves, finding the fields, E; and H, , by solving
the wave equations. They are partial differential equations, and their solution requires boundary
conditions. As the tangential components of the electric field at the surface of a perfect conductor
are zeros, and as the inner faces of the plates, which are assumed to be perfect conductors, are
located at x =0 and at x = a, the fields there must be zero i.e. E,=0=E; atx=0andat x=a.
These are the required boundary conditions and are highly useful in obtaining the expressions for
the field components by solving the wave equations.

12.1.2. TM waves

The TM waves, as already mentioned, are characterized by the absence of magnetic field and the
presence of electric field along the direction of wave propagation. It implies that the H vector is
entirely transverse (synonym for perpendicular) to the direction of the wave travel i.e., thus, H,
=0 for a wave traveling in z-direction. When it comes to E vector, it exists along as well as
normal to the direction of wave propagation. Now, to obtain an expression for E,, the wave
equation is solved, which is given by

0°E

V’E,= ue atzz (12.7)
If the time-variations and z-variations, both, are exponential, then the expression for E, becomes
E,(x,y,z,t)=E,(xy)e " e (12.8)
After substitution of Eq. (12.8) in Eq. (12.7), and then some manipulation leads to
aZEZ +62EZ +_2E 42 E
aXZ ayz }/ z w :ug z (129)

The wave travel is entirely confined to z-direction. As a consequence, the fields cannot have any
variations along the y-direction, and hence, 6/dy =0. Incorporating this into Eqg. (12.9), one can
obtain that,

0°E

2 (7 rotus)E, =0 (12.10)
Using h?* = 72 + w’ue , Eq.(12.10) can be recast as,
2
E: L wE -0 (12.11)

ox?
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Figure 12.3 Fields between parallel planes for TM;o mode

The general solution to the above second order partial differential equation is,
E, =(Acoshx+Bsinhx)e™’* (12.12)
where A and B are arbitrary constants whose values can be fixed using the boundary conditions, ,
E,=0atx=0 and at x = a, it can be obtained that
A=0andh=mnla, m=0,1,2... (12.13)
After substituting the obtained values for arbitrary constants, the expression for the field
becomes,

. (m -
E, = Bsin (—” xje” (12.14)
a
Here, B is an arbitrary constant and for mathematical convenience, its value is chosen as,
g=1""¢
wea

The C, is another arbitrary constant. With the availability of expression for E; , the other field
components can be computed using Egs.(12.2). After including the exponential time variations
and z-variations, the complete set of the field components between the parallel plates, for TM
wave, become

H,=0 ; E, =C, M sin (m x} g iFzgict (12.15a)
wea a
E,=C, P cos (@ xje"’“e"‘"t ,  H,=C,cos (m xje"’“e"“’t (12.15b)
we a a

The expressions for fields of TM wave, available above, are illustrated in Figure 12.3, using flux
lines for m =1 i.e., TMjo mode.

12.1.3 TE waves

The TE waves are characterized by the absence of electric field and the presence of magnetic
field along the direction of propagation of the wave. It implies that the E vector is entirely
transverse to the direction of the wave travel. When it comes to H vector, it exists along as well
as normal to the direction of wave propagation. In the present case, E; = 0 and as the boundary
conditions are not available on H,, the component E,, for which boundary conditions are
available, is considered for obtaining the solution. The wave equation for E is given by,



0°E

VE, = ue 8t2y (12.16)
By following a procedure similar to that used in the previous section, one can arrive at
o’E,
—axzy +h’E, =0 (12.17)
. X Ir i i II . X
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Figure 12.4 Fields between parallel planes for TE;o mode

The general solution of this equation is same as that for wave equation solved in the previous
section. Using boundary conditions, E, = 0 at x = 0 and x = a, one can get the particular or
specific solution from the general one. The resultant specific solution then is

E, =C,sin (%} xe7? m=123.. (12.18)

Wave fronts

Figure 12.5 Illustrating wave propagation between parallel plates.

With the availability of expression for Ey, using second one of Egs.(12.2b), H;,
computed. From, E; and H, other components can be computed using the relations available in
Egs. (12.2), connecting transverse components to longitudinal ones. After including the
exponential time variations and z-variations, the complete set of the field components for TE
wave between the parallel plates become

E,=0 : H, = Cljm—”cos(m xj g Fzgiot (12.19a)
wua a
E, :Clsin(%xje"’“e"‘”t . H, :—Clﬂsin(mxje”“e"“’t (12.19b)
a oy a

The flux line representation of fields of TE wave are shown in Figure 12.4, for m =1 i.e. TEj
mode. Until now, several aspects of propagation between plates are examined, and its behavior
in between the parallel plates is illustrated in Figure 12.5. Note that the propagation is not



through the metal of conductor plates: the wave actually passes through the hollow region in
between the plates. The role of plates is merely to confine the wave to hollow region.
FILTER CHARACTERISTICS

Infinite parallel plate arrangement and waveguide systems, both, behave like high-pass
filters. They admit and allow the wave to propagate through them only if the frequency of the
wave is more than certain value known as cut-off frequency. Its value depends upon plate
spacing/ guide dimensions, mode of wave and also the properties of the medium between
plates/guide hollow region. Now, the terms, the cut-off frequency and its corresponding
wavelength, called cut-off wavelength, phase shift constant and guide wavelength etc, which
essentially describe the filtering nature of the guide system and waveguides are defined and
explained in detail.
Cut-off frequency, f¢: It is the frequency above which frequency of the wave should be in order
to get entry into the parallel plate system/waveguides for propagating further through them. Its
value depends upon plates spacing/guide dimensions and on the wave mode.
Parallel plate guide: The cutoff frequency for parallel plate guide can be found as,

A (12.38)

2a./ ue
Cut-off wavelength, A.: Wavelength corresponding to cut-off frequency is called cut-off
wavelength. It can be defined as wavelength below which wavelength of the wave should be in
order to exist with in parallel plate system/waveguides for propagating further through them.
Its value, like the cutoff frequency, is related to plate spacing/ guide dimensions and mode
numbers of the wave through it. However, unlike the cutoff frequency, it is independent of the
constituent constants of the medium between the plates/hollow region.
Parallel plate guide: The cutoff wavelength for parallel plate guide can be found as,

5 =2 (12.41)
m

Phase-shift constant,5: The phase-shift constant, which indicates the phase change per unit
distance, in the wave along the direction of propagation, is given by

a)\/u_e — = o~/ UE 1——[—} (12.45)

1,

In general, travelllng waves are associated with change in phase and they undergo a phase
change of 2n rad by the time they travel a distance equal to the wavelength, A m. Therefore,
phase change per unit distance or meter, which is phase shift constant, S becomes 27 /A .

Guide wavelength, 1 : The guide wavelength, indicated by A or 14 is wavelength along
propagation direction and is by definition the distance between two consecutive points which
differ in phase by 2n radians measured along the direction of wave propagation.

Both for parallel plate guide system and waveguides, it is given by,

T 2w A

B Mjl £/1) \/u”—i/i

Here, it is assumed that region between plates/hollow region of guide is filled with a dielectric,
having constitutive constants, & and u,. From the expressions, Eq.(12.46), it can be observed that
the guide wavelength varies with frequency. This dependence can be described as:

(12.46)



e Above cutoff, with increase in frequency of the wave, guide wavelength decreases and
with decrease in frequency, guide wavelength increases. Just near cut-off frequencies, it
assumes highest possible values.
e At cutoff, the guide wavelength is infinity and below cutoff, it assumes complex values
indicating non-existence of traveling wave in the guide.
When region between parallel plates/guide's hollow region is free space, then the guide
wavelength becomes,
A

P 3 A
]
V=(2/2. ) 1= (1/ 1)
It can be noticed that the first one is entirely in terms of wavelengths and the second one involves
both frequencies as well as wavelength. These two are considered as standard expression for
guide wavelength in an air-filled waveguides. The guide wavelength can also be framed in a
more popular form, connecting all the three wavelengths as shown below:

1 1 1

VS )
Proof : Now, the derivation of relations for cut-off frequency and cut-off wavelength is
undertaken. It is already known that the propagation constant y can be related to the frequency,

w, of the wave, according to Eq. (12.3), as 7°= h*~ w?ue or

7 =h* —0® ue (12.49)

From the above relation, Eq.(12.49), it can be noticed that, depending upon the relative values of
h? and w?ue, the propagation constant 7 can be pure real or imaginary. When h?> w?ue he
propagation constant is pure real quantity, indicating that the waveguide is acting as a pure
attenuator, without allowing wave motion, refusing entry to the wave. However, when h® < w®ue,
the propagation constant is pure imaginary quantity, indicating that the waveguide is acting as a
pure transmission line, without any attenuation to the wave. This must be the case to which the
guiding system under consideration belongs, since it is given that the wave is already inside the
guide and loss-less conditions are assumed prevailing, i.e., plates are assumed to be perfect
conductors and region in between them is considered as perfect dielectric.

The change over in the behavior of the guiding system from pure attenuator to pure
transmission line takes place as the frequency is increased from lower to higher values, when
h*=w’ue . The frequency of the wave corresponding to this relation is called cut-off frequency,
w~(2nf;). Hence, at cut-off frequency,

w? ue =h? (12.50)
Combining h available in Eq.(12.13) with Eq.(12.50) results cut-off frequency for parallel plate
guiding system, given in EQ.(12.38). Using h value available in Eq.(12.24) with Eq.(12.50)
results cut-off frequency for rectangular waveguide, given in Eq.(12.39). And substituting h
value available in Eqgs.(12.32)and (12.37) with Eq.(12.50) results cut-off frequency for circular
waveguides, given in Egs.(12.40).

The corresponding wavelengths, cut-off wave lengths can be found using A.= v/f; . Note that the
expressions for cut-off frequency f. and cut-off wavelength 1. are same for both the types of
waves i.e. TE and TM waves, in parallel plate guide and rectangular guides. However, for
circular guides, TE and TM waves have different values. Another point worth mentioning here is,
that the product of cut-off frequency and cut-off wavelength is equal to v (=f; Ac= 1/\ue ) but not
to c(= f 4 = 1 uoso).

(12.47)



Next, the derivations pertaining to phase shift constant and guide wavelength are
considered. In the present case, it is given that the wave is under loss-less conditions and it is
already inside, so the propagation constant y must be pure imaginary i.e.

7=+h?-0?us=ijp (12.51)

The phase shift constant, therefore, becomes

B =\ o’ us —h? (12.52)
Using h values available in Egs. (12.13), (12.24), (12.32)and (12.37) the phase shift constants
for parallel plate guide, rectangular guide and circular guides can be found from Eq.(12.52).
From the basic definition of wavelength and phase shift constants, wavelength 1 can be
expressed as A =2m/B. Substituting the available expressions for g in this basic relation, the
expressions for guide wavelength can be easily found.

Example 12.3 : Two parallel plane infinite conducting plates are separated by 2cm. Find the
cut-off frequencies for m =1 and 2 when values of permeability and permittivity are (a) u=uo ,
e=¢, and(b) u=uo , e=4e,.

Solution:

(a) Permeability and permittivity are, u=uo , e=¢o.

The cut-off frequency is,

om mx 3x10% B 3x10"
© 2afus  2aue, 2x2
This value is for m=1 and similarly, for m =2, it can be found that f, = 1.5x10'°Hz

f =0.75x10"Hz

(b) Permeability and permittivity are, u=u, , e=4e,.
The cut-off frequency is,
¢ _Mmx3x10% 5 g0

28y He&, 2x2x%x2

This value is for m=1 and similarly, for m =2, it can be found that f, = 0.75x10"°Hz
Example 12.4: Two parallel plane infinite conducting plates are separated by 4cm. Find the cut-
off wavelengths for m =1 and 2 when values of permeability and permittivity (a) u=uo , £=¢o
and(b) u=uo , e=4e,.
Solution:
(a) Permeability and permittivity are u=u, , =&,
The cut-off wavelength, is

2a 2x4 2x4
A, =—= =

m m
This value is for m=1 and similarly, for m =2, it can be found that 1 = 4cm. As the cut-off
wavelength is independent of medium properties, previous results are valid even for (b) u=u, ,
e=4e,.
Example 12.5: Two parallel plane infinite conducting plates are separated by 4cm. Assuming
frequency of the wave as 9.0GHz, find the wavelength along the propagation direction, for m =1
and 2 when values of permeability and permittivity are (a) u=uo , e=&, and(b) u=uo , e=4¢,..
Solution:
(a) For the given values of u=u, , e=¢, and f=9.0GHz, it can be found that,

=0.375x10"Hz form =1

=8cm




A’ flue,  4r*x9°x10'®
o’ ue = - T (0.67)?
The wavelength along the propagation direction then becomes,
7= 2z = 2z = 2.141cm

Jo'ue—(mr/a)  \J(06x) - (x/4)
This value is for m=1 and similarly, for m =2, it can be found that A = 6.03cm.
(b) For the given values of u=u, , e=4¢, and f=9.0GHz, it can be found that,

A fiue,  4m?x9*x10% x4

o’ ue = . = 10 =(1.27)?
The wavelength along the propagation direction then becomes,
2r 2r

A= = 2.466¢cm

\/wzug —(m7r/a)2 \/(1.27r)2 —(7:/4)2
This value is for m=1 and similarly, for m =2, it can be found that A = 2.91cm.

12.4 MODAL PROPAGATION

The electromagnetic energy propagation in between parallel plates, and along the waveguide is
in the form of certain definite field patterns, known as 'modes'. This is an important and special
feature of the energy propagation in guided waves and waveguides. These field patterns or
modes are described by mentioning the transverse nature of wave i.e. TE or TM along with two
subscript numbers, m and n.

Parallel plate guide: The guided wave propagation is in the form of modes, as is

evident from Figures 12.2 and 12.3. These modes are distinguished with type of mode, that is TE
or TM, and with mode numbers as subscripts, denoted with m and O in that order. Transverse
electric modes are denoted as TEny whereas transverse magnetic modes by TMyo. Certain points
worth mentioning regarding modal propagation are given below:
e Subscripts: For TE wave, m can assume any integer value, from 1 onwards. For TM wave,
however, m can assume any integer value from 0 onwards. Actually, the subscripts for modes are
m and n and they are supposed to indicate the no. of half wavelengths along transverse directions
normal to direction of propagation. In the present case, as there is no wave motion in one of the
transverse directions, y-direction, the second subscript has become zero.
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Figure 12.10 Fields between parallel planes for TEM or TMg, mode
e Principal mode: A wave with, both E, and H; equal to zero, is called principal wave. In this,
electric and magnetic vectors, both, are normal to direction of propagation, and hence, it is a
TEM wave. This type of wave comes into being, when m = 0 for TM mode and hence, its mode



IS TMgo. Substituting m = 0 in Eq.(12.19), the field components for the principal wave can be
obtained as,

E, =0 ; H =0 (12.53a)

E, =Co£e’”’ze"‘“t ;. H,=C.e el (12.53b)
e

The fields of principal wave, TMqo are shown in Figure 12.10, using flux-line representation. The
concept and utility of flux lines or field lines in the representation of the fields are already
introduced and explained. As the wave carries both electric and magnetic fields, its
representation in guide involves both types of flux lines, i.e. electric as well as magnetic lines.
From the basic nature of fields, it can be noticed that electric and magnetic lines never cross each
other. The magnetic lines are always closed curves. Both the categories of the lines can be
sketched from the expressions of the fields in those regions.

Apart from the general usefulness i.e. graphical representation of fields, the flux line
representation of fields in waveguides has another important application. It is useful as well as
used in placing the probe or loop at appropriate place to excite the required mode in the guide.

12.5 DISPERSION CHARACTERISTICS

Electrical transmission media, in which the velocity of the wave depends upon its frequency, are
called dispersive media. Parallel plates, hollow-pipe waveguides, which are now under
consideration and optic fiber cables, used to transmit signals at light frequencies, are examples
for this type. If the velocity is frequency independent, then such media are termed as non-
dispersive media. The parallel wire transmission lines, coaxial cables, and also free space fall in
this category.

As parallel plates and hollow-pipe waveguides are dispersive, the waves that are carried
by them, TE and TM, are referred as dispersive waves. Similarly, waves carried by non-
dispersive media, TEM waves, are called non-dispersive waves.

To describe the wave phenomenon, parameters like wavelength, time period, frequency etc. are
required. Along with them, the phase and group velocities also have some importance in wave
theory, particularly, with respect to waves in non-TEM mode. Here, both these velocities are
considered with respect to parallel plates and waveguides.

12.5.1 Phase velocity:
The phase velocity, v, is defined as the velocity with which the equi-phase surfaces propagate
along the guiding system. It can be found using,

v =2 (12.55)

Parallel plate waveguides: Now, consider the phase velocity of wave travelling in between
parallel plates/ in waveguides. An expression for phase shift constant of this wave has already
been derived, and available in Eq. (12.44). Substituting this expression into the Eq. (12.55), one
can get

2

2Y 27Y2
Vv =v{1i[ij ] =v{1(ij ] (12.56)
P :Ltl’gl’ /’LC f

In the case of air-filled region between the plates, then &=1 and x =1, and the expression for
phase velocity becomes



277Y2 2Y2
v, ={1[}%j ] ={1(%} ] (12.57)

Table 12.1 Properties of guided wave propagation and waveguides.

S.No Parameter f=f f — o0
L. Phase velocity, v % v=v=1/ ue
2. Group velocity, Vg 0 v
3. Guide wavelength, 2 0 2 =2=2r]o\ue
4. Phase shift constant, 8 0 B = w4 ue

12.5.2 Group velocity :
The group velocity, vy is the velocity with which the signal or group of frequencies, denoting
intelligence, travels through the system. It is given by

v, = do (12.58)
dp

Parallel plates and waveguides: Now, consider the group velocity of wave travelling in
between parallel plates/ in waveguides. By differentiating the Eq. (12.24), which relates the
frequency with phase shift constant, one can obtain the relation for group velocity as follows:

dg 1

do 2
Inverting the relation in Eq. (12.59), the group velocity of the wave between parallel plates can
be obtained as,

2 2 2 2 2

O uE —o pe Vo ue — @] ye

vg=d?= HEZOHE _ He % (12.60)
dg WUE 10)

The relation in Eq.(12.60) can also be put in terms of cut-off values by simple manipulation as,

r 22 272
vV, =V 1—L A =v|1l- I (12.61)
’ :Ltl’gl’ /’LC f

In case, if the region in between the plates is free space, then

r 22 272
v, =¢ 1—[%} ] =c{l(%} ] (12.62)

From the expressions of phase and group velocities, one can easily notice that their product is
equal to square of velocity of unbounded wave, i.e. 17vg:v2 . In case hollow region is free space,
this product becomes c?. Various parameters of wave propagation in between the plates are given
in the Table 12.1. In the above expressions, Eqs.(12.61) and (12.62), the parameter v is given by
v = 1/\ue and it can be considered as the velocity of the wave in unbounded medium having
constants, x and «. It is related to free space velocity, ¢ through v = c/Nur & .

[a)zug - a)fug]_]/2 20E = ouE [a)zug - cofug]_]/2 (12.59)

Note that, in the case of air-filled waveguide, as the frequency is increased from the cut-off to
infinity, guide wavelength and phase velocity vary from infinity to their free space value where
as the group velocity varies from zero to its free space value. Also note that the phase velocity



and group velocity are same for TEM wave. None of these two depend upon the frequency and
so TEM wave is non-dispersive.

As just seen, in parallel plate guiding system and in waveguides, as they are dispersive,
the wavelength along the length of guide, velocities of the wave, both phase as well as the group,
varies with the frequency. This dispersion phenomenon is mostly unwanted because, in the
signal, it spoils the original phase relation between different frequency components, as it travels
down the guide. Ultimately, it leads to distortion and complete or partial loss of information.
Here, various parameters, and also expressions for them, pertaining to the dispersive nature of
waveguides are introduced and described.

Example 12.10: Two parallel plane infinite conducting plates are separated by 4cm. Find the
wave velocity and group velocity of 9.0GHz wave for m =1 and 2 when values of permeability
and permittivity are () u=uo , e=&, and(b) u=uo , e=4¢,.

Solution:

(a) For the given values of u=u, , e=¢, and f=9.0GHz, it can be found that,

4r’flue,  Am?x9°x10"

o’ ue = . T (0.67)?
The wave velocity, can be found as,
9
V= @ ___2mx9x10 =3.30x10"cm/s

Jolus—(mz/ay  \J(0.6x) —(x/4)
This value is for m=1 and similarly, for m =2, it can be found that 7 = 5.4x10"cm/s.
As the wave is in free space, v=c and the group velocity can be found as,
2 2 (3x10°)
V=e = =% = 2.72x10°cms
v Vv 3.30x10
This value is for m=1 and similarly, for m =2, it can be found that vy = 1.6x10™cms.

(b) For the given values of u=u, , e=4¢, and f=9.0GHz, it can be found that,
A fiue,  4m?x9°x10% x4

o’ ue = . = 10 =(1.27)?
The wave velocity, can be found as,
9
v 290 5 o0x10emis

J@.27) —(z/4y
This value is for m=1 and similarly, for m =2, it can be found that 7 = 2.6x10"cm/s.

As the wave is in dielectric medium with &=4, velocity, v=c/2 and the group velocity, can be
found as,
(15x10°)

2
v, = VT =~ =1.02x10"cm/s
¢y 2.20x10

This value is for m=1 and similarly, for m =2, it can be found that v, = 0.86x10"cms.

12.6. IMPEDANCES OF WAVEGUIDES




It was Oliver Heaviside, who coined the term impedance for the first time in nineteenth
century, to describe the complex ratio V/I in AC circuits. Later, Schelkunoff extended this
concept to electromagnetic fields, in a systematic way to describe the ratio of electric to magnetic
fields. In his opinion, impedance should be considered as a combined characteristic of field and
medium.

In waveguide theory, two types of impedances are encountered: wave impedance and
characteristic impedance. The first one is borrowed from wave theory and it is related to ratio of
electric field to magnetic field of a traveling wave, where as the second impedance is related to
the description of power flow along the length of the guide. Both these impedances are described
in detail and corresponding mathematical expressions are derived hereunder.

12.6.1. Wave Impedance

The wave impedance is usually denoted by Z, and for waveguides, it is defined as the ratio of
total transverse electric field strength to total transverse magnetic field strength. Mathematically,

Total transverse electric field  E (12.63)

Total transverse magentic field H, .

In case of rectangular waveguides, when they are lying along the z-axis, the x- and y-components
of the fields constitute the transverse components as they are normal to the propagation direction.

The total transverse electric field then is V(E+ Ey ) whereas the total transverse magnetic field
is V( HZ + Hy ) . Thus, when the guide is lying along the z-axis, wave impedance, according to
definition, becomes

trans VEZ + EZ (12 64)
“ " Hyen T |

In case of circular waveguides, lying along the z-axis, the p- and ¢-components of fields are
normal to propagation direction, and hence, they are the transverse components. Thus, when the
guide is lying along z-axis, its wave impedance becomes,

JE. +E;
- e (12.65

It can be shown that the value of the impedance depends upon the mode of the wave traveling in
the guide and it is given, for both the types of waveguides, by

forTEmode
:T“://_ //1— -z
% B

ﬁ_ 2 for TM mode (12.66)
oz J i J _Z(ZJ

trans

z

— [



Here # is intrinsic impedance and it is related to the constants, x and ¢ , of the of the hollow
region of the guide through #=V(u/¢) Q. Note that, for free space or air, the intrinsic impedance is
120 Q i.e., o = 120w Q.

o

L

1 }“’:}”c =

Figure 12.13 Illustrating the variation of wave impedance with wavelength.

In general, wave impedance is a characteristic type of wave, TEM, TE, and TM and, it
usually depends upon the type of line or guide, the material and the operating frequency. This
parameter of the waveguide medium can be likened, conceptually, to the intrinsic impedance of
the free-space medium.

12.6.2. Characteristic impedance

The concept of characteristic impedance has been brought into and applied to waveguides from
theory of transmission lines. It is defined in several equivalent ways, in transmission line theory,
in terms of line voltages, currents and power through the line. VVoltage-current formula, power-
current formula and power-voltage formula respectively are

z,(v=", z,(P)=2 & z,(Pv)=L (1267)

where V and | are voltage and current and P is the power flowing over the line, when extended
to infinity, all are complex quantities representing peak phasors.
All the above definitions, give same value of characteristic impedance, when applied to a low
frequency TEM wave carrying line. However, when applied to waveguides, different definitions
give different values of characteristic impedance. It is mainly due to the lack of a unique
definition for voltage and current in terms of fields in waveguide. Under such circumstances, it is
quite possible, for the above mentioned different defining relations, which are in terms of
voltages and currents, to give different values of characteristic impedance.
When the voltages and currents are computed in a commonly and widely followed method, one
can obtain the following expressions for the characteristic impedance.
e In case of rectangular waveguides, for dominant mode:

Voltage-current formula gives

Z,(V,1) =592 (TE)

_ 6022 /“f 592 “f (12.68a)

Power-current formula and power- voltage formula respectively give




12.68b)

0

Z (P,I):%ZO(V,I) & ZO(P,V):%ZO(V,I)

e In case of circular waveguides, for dominant mode voltage-current formula, power-current
formula and power-voltage formula respectively gives
Voltage-current formula gives,

2 A, (12.69
Z (v,|)=520ﬁ, Z,(P,1)=354"% & Z,(P,V)=764"% (1259
(o} A 0 A 0 ﬂ,

It can also be noted that, the characteristic impedance is mode dependent. The reason is not
difficult to find: voltages and currents are mode dependent, and hence, TE and TM waves have
different values.

The primary utility of characteristic impedance is, to set the value of load impedance for
reflection-less transmission. When its value is not unique, naturally, doubt arises regarding the
value which one has to select for matching purpose. The usual practice is, to match the wave-
guide to uniquely defined impedance, to use the impedance value that gives best agreement
between theory and experimental data.

12.7. ATTENUATION

In the analysis of wave in between parallel conductor planes or in waveguides, it was
assumed loss-free conditions, mainly, to simplify the analysis procedure. The wave, while
travelling through parallel conductor plane system or waveguide, comes in contact with the
conductor planes as well as the hollow region between the conductor planes. The planes are
assumed to be perfect conductors and the in between region is considered as a perfect dielectric
without any conductivity. A perfect conductor and a perfect dielectric can neither absorb nor
dissipate the power and as result loss free situation prevailed.

But in practice, conductivity of the planes is finite, not infinite and that of the in between
region is not zero, a nonzero. As a consequence, the wave, while traveling through the parallel
plane guiding system, gets absorbed, however small it may be, by the conductor planes as well as
the in between region. It ultimately leads to attenuation of the wave, called dissipative
attenuation.

The dissipative attenuation has two components: dielectric losses and conductor losses.
Due to nonzero conductivity, the region in between the plates absorbs power from the wave
leading to its attenuation, which is accounted for by dielectric loss. Similarly, due to finite
conductivity, the plates absorb power from the wave, attenuating it, and it is accounted by
conductor loss.

In case of non-TEM wave carrying systems, in addition to dissipative attenuation, another
type, called reflective attenuation also exists. This comes into being when the wavelength of
wave is not small enough to get admitted into guiding system. Magnitude wise, it is enormously
large when compared to dissipative attenuation. All the types of attenuations are placed in the
Table 12.4.

Table 12.4 Attenuation properties of waveguides.

Reflective

S.No. attenuation, dB/m Dissipative attenuation, Np/m

1. cac | 7432 Dielectric losses | Conductor losses




) power dissipated/unit length
_ pttano a. = -
oy :T 2xpower flow down the guide
2. f<f. f>f.
3 Huge Very low

Now, the analysis of the wave when it is traveling through a practical, not ideal loss-free guide,
is undertaken.

12.7.1 Reflective Attenuation:
When wavelength is more than the cut-off wavelength i.e., 4 > 4., the wave cannot enter into the
guiding plates or waveguides. This behavior of the guiding system is taken into account by
attributing large amount of reflective attenuation to the guiding system. The important features of
this attenuation are:
e When a guiding system is excited with a wave whose wavelength is more than cut-off
value, i.e., 1 > A, the electric and magnetic fields of the wave decay in the guide
exponentially with distance at a very rapid rate due to huge amount of attenuation.
e The resultant attenuation depends only on the ratio 1/ i.e. free space wavelength to the
cut-off wavelength.
e The attenuation, however, is independent of properties of guiding plates or in-between
region. This feature is very much unlike the dissipative attenuation, which is dependent
upon the conductivity of the guiding walls and the hollow region in between the walls.
e The exact relation for attenuation per unit length in dB is

2
w22 1{%} (12.70)

When the wavelength is much greater than its cut-off value, the above formula can be
approximated to
_54.6

A

C

e These relations apply to all modes of propagation and it can be observed that when /4.

large, the attenuation is large and substantially independent of frequency.
12.7.2 Dissipative attenuation:
When wavelength is less than its cut-off value, i.e., 4 < ¢, the wave can exist inside and travel
through the guiding system. While traveling, some of its energy gets absorbed by the walls due
to their finite conductivity and also by the hollow region due to its non-zero conductivity,
resulting in dissipative attenuation. Its two components, dielectric loss and conductor loss, and
both are described and discussed about, one after another here.
Attenuation due to dielectric loss: The attenuation the wave undergoes while it is traveling
through the guide, due to energy absorption by the lossy dielectric region of the guiding system
is called dielectric loss. It can be shown that the dielectric loss is

2
tan o
o, 2 P2tEN0
2p
Note that if the dielectric is a perfect one i.e. without conductivity, then this loss would not
occur.

o (12.71)

Np/m (12.72)



Proof: If the region in between the plates is a perfect dielectric i.e. with zero
conductivity, then its permittivity, ¢ is, let us say eoer 1.€., €= &o&r, @S Shown in Figure 12.13(a).
When the region is an imperfect dielectric i.e. with nonzero conductivity, let us say, o, then its
permittivity, & becomes eoer(1—jtan o) = e(1-jtan o) , where tan ¢ is called loss tangent and is
given by tan ¢ =o/we, as shown in Figure 12.13(b). Note that loss tangent assumes zero value for
perfect dielectric media.

In case of perfect dielectric in between the plates, and wave inside the guides, the propagation
constant, from Eq. (12.22), is

7 =B =+n* -0 us (12.73)

However, with imperfect dielectric in between the plates, the propagation constant becomes
(12.74)

7= \/hz —o’ue(l-jtans) = \/h2 —o’us+ jo’ustan§
In the above relation, note that the expression for permittivity used is that of an imperfect
dielectric, given by e(1-jtan o). The last term in Eq. (12.74), in general, is very small, because
of low conductivity of the dielectric region. Now if, h? — w?ue = a® and w?ue tan 6 = x* then the
propagation constant in Eq. (12.74) can be written as

7 =+a’+ jx°

FPerfect dielectnc =0

£ =55
V=o' —a’us

a; =02p

(a) (k)

Figure 12.13 Dielectric loss in (a) perfect dielectric and in (b) imperfect dielectric.
In practice, as already mentioned x is very small and x<<a. In such case, the propagation
constant can be approximated, with the help of Taylor’s series expansion, as

2 2
. . t
Y~ a+j£—x =\/h2—a)2,u5+j£—a) ;ug a2n5 (12.75)
2 a 2 \/h? —w’ue

From Eq. (12.73), as jB =+/h?* — o’ e the above Eq. (12.75) can be expressed in terms of phase
shift constant, S as

1 w’ustand o ustand . =
jo e S0 LB
2 )p 2p
But, from definition, the real part of propagation constant is attenuation constant. Thus, the
attenuation constant due to dielectric loss becomes
2 2
g, = keans _ pans o (12.76)
2p 2p

y=1B+




In the above expression, A, phase shift constant for TEM wave, is substituted for w\ue. This
relation for attenuation is valid for all types of waves, i.e. TEM, TE and TM waves. However,
in the case of TEM waves, S== w\ue, making the relation the attenuation constant as

a, =¥tan6 Np/m.

It can be observed that the dielectric loss becomes nil when the conductivity or loss tangent of
the dielectric is zero. The above relations for attenuation constant due to the dielectric loss are
most general and can be used with any type of guiding system including waveguides.
Attenuation due to conductor loss: While traveling through the guide, wave also undergoes
considerable amount of attenuation due to absorption by the conducting plates. The attenuation
due to conductor loss can be found as
_ power dissipated/unit length

2xpower flow down the guide

Note that if the plates are perfect conductors, then this type of attenuation would not
have occurred. Thus, it is due to finite conductivity of the walls of waveguide.
Proof: The derivation of the above formula is based on the principles of transmission line theory.
Consider a finite length transmission line and let us suppose the voltage and current phasors
along the line, when it is extended to infinity, are
V=Ve e and | =1,

Then the average power transmitted is

P, :%Re{VI*}:%Re{VOIg fe e

(12.77)

c

The rate of decrease of transmitted power along the line will be

_HR _ +2aP,,
0z
The decrease of transmitted power per unit length of line is
—-AP,, =2aP,,

And, this is the power dissipated per unit length. Solving the above equation for the attenuation
constant
—AP... _ Power lost per unit length
Pae Power transmitted
It leads to the expression for attenuation constant
_ Power lost per unit length
2 x Power transmitted
This relation is a most general one and it can be used to find the attenuation in parallel plate
system as well as in waveguides.

200 =

12.7.3. Attenuation in Parallel plate guide
Attenuation for TEM wave : Now the Eq. (12.77) is applied to parallel plate guiding system to
find conductor losses, first for TEM wave and then for TE/TM waves. The field components for
the principal or TEM wave, from Eq.(12.51), are

H,=0 ; E,=0

E, :(,B/a)g)Coe’jﬁzej“‘; H, =C.e el



The surface current density over inner face of each plate can be computed from, K= 7nxH and its
amplitude can be found as, K=C,. The loss per m? on each plate is K’Rg/2=C2R¢/2. Here, R is
the surface resistance of the conducting plane and it is given by

R = [ZHng
20,

The total loss in both lower and upper plates per meter length with in a width of b meters
becomes, C2ZRsb. Thus, the power loss per unit length becomes, C2Rs. According to Poynting
theorem, the power transmitted down the guide per unit cross sectional area is Re(ExH")/2. In
the present case, the fields are at right angles and in time phase. Their ratio is 7, intrinsic
impedance of the in between region. Thus, the power flow per unit cross sectional area becomes
nCZ2/2. When the spacing is a and width is b , the cross sectional area becomes, ba . Thus,
power transmitted through this area = nC2ba/2. With availability of power loss and power flow,
the attenuation factor can now be computed, using Eq.(12.77), as

3 CZRb 1 |ou,

 2x(Y2)nCla  na\ 20,
Attenuation for TE/TM wave: Let us consider first the TE wave and, its field components
from Eq. (12.19) are:

Np/m (12.78)

_ - -
E,=0 ; H, =—£C1 cos(—”x)e”“e“”t
U a
, 72 m m Fai
Ey=Clsm(%xje‘ﬂze"”t ; H, = J BN sm( d je‘ﬂze“"t
a wpa a

First, the power losses are computed, from the available field expressions. The surface current on
each plate is
mzC
K, =My gy =
oua
The loss in each plate then becomes
2_2n~2
%KiRs _mx CZ: VOt 20, (12.79)
o a
The total loss is twice that given by the above expression. The power transmitted in the z-
direction per unit area, using Poynting theorem can be calculated as

1 1 ﬁ Py
ERe(E H) = E(EyHX) 1 gjn ( . xj

20U
The power transmitted in the z- direction per one meter width, when the spacing is a , is
ne?2
I /3C —=sin (m” xjdx AST (12.80)
x=0 20 a 200
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Figure 12.14 Variation of attenuation with frequency in parallel plate system.

With availability of power loss and power flow, the attenuation factor can now be computed,
using Eq.(12.77), as

_ 2m27[2_\[a)lum /ZO'm (1281)
Boua’
Substituting the expression for phase shift constant, from Eq. (12.50) and (12.13), it can be

obtained that
2m’r®Jou, /20, (12.82)
a = .
a)ua?’\/a)zug —(mn/az)
From the above expression, it can be observed that the attenuation is infinity at cutoff and falls
to low values at higher frequencies. At frequencies very much higher than cutoff, the attenuation
varies, inversely as the three halves power of the frequency.

For TM, waves, the attenuation factor can similarly be found. For these waves, the
attenuation reaches a minimum at a frequency that is V3 times the cutoff frequency and then
increases with frequency. At frequencies much higher than cutoff, the attenuation varies, directly
as square root of the frequency. The variation of attenuation with frequency in parallel plate
system for different types of waves is shown in Figure 12.14.

o




UNIT-IV
GUIDED WAVES
Assignment-Cum-Tutorial Questions

SECTION-A

1. Wave in guide travels through [ ]
(a) Guide walls (b) dielectric (c) Both (a)and (b)  (d) None

2. The propagation constant pure real implies [ ]
(a) Wave without attenuation (b) No wave motion
(c) Wave with attenuation (d) None

3. The propagation constant pure imaginary implies [ ]
(a) Wave without attenuation (b) No wave motion
(c) Wave with attenuation (d) None

4. The propagation constant complex implies [ ]
(a) Wave without attenuation (b) No wave motion
(c) Wave with attenuation (d) None

5. In TM wave, H can have component [ ]
a) Parallel to propagation b) Normal to propagation
c) Both (a) and (b) d) None of these

6. In TE wave, H can have component [ ]
a) Parallel to propagation b) Normal to propagation
c) Both (a) and (b) d) None of these

7. The lowest order TE wave in between parallel conducting plates is [ ]
(@) TE, (b) Principal wave  (c) Both(a) and (b)  (d) None

8. The principal wave is [ ]
(@) T™M, (b) TEM wave (c) Both(a) and (b).  (d) None

9. The nature of the wave normal to plates is [ ]
(a) Pure standing (b) Pure traveling (c) Impure traveling (d) None

10. The nature of the wave parallel to plates is [ ]

(@) Pure standing (b) Pure traveling (c) Impure traveling (d) None
11. The following wave in the parallel plate waveguide is called principal wave

[ ]
A) TE wave B) TM wave C) TEM wave D) Plane wave
12. The following wave is called TE wave [ ]
a. Electric field component normal to wave propagation direction is zero
b. Electric field component tangential to wave propagation direction is zero
c. Magnetic field component normal to wave propagation direction is zero
d. Magnetic field component tangential to wave propagation direction is zero
13. The following mode is not possible in parallel plate waveguide. [ ]
A) TE: B) TEo C) TMy D) TMo
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. On the surface of a perfect conductor, the following statement is true [ ]

a. Tangential component of H field is zero

b. Normal component of E field is zero

c. Tangential component of E field is zero

d. Both tangential and normal of E field is zero

15

. Which of the following are not guided waves? [ ]

A) Waves along ordinary parallel wires B) Waves in waveguide
C) Waves in co-axial transmission line D) waves travelling in free space

16.
17.
18.
19.
20.
21.
22.
23.
24.
25.

26.
27.

28.

29.
30.
31.
32.
33.
34.

35

The cut-off wavelength of wave in between parallel plane conductors is
The phase shift constant for wave in between parallel plane conductors is

The phase shift constant for wave in between parallel plane conductors at cut-off is -
The phase shift constant for wave in between parallel plane conductors at high
frequencies is

Transmissions lines carry waves in-----------—---- mode where as waveguides carry in-----
TEM mode.
Pure real value of propagation constant indicates---------------- attenuation and
wave motion.
Pure imaginary value of propagation constant indicates------------ attenuation and
wave motion.
In TE wave the electric vector is--—---- transverse to the direction of propagation of
wave.
In TE wave the magnetic vector has--————-- component along the direction of
propagation of wave.
In TM wave the magnetic vector is entirely--—-- to the direction of propagation of
wave.
In TM wave the electric vector has a------ along the direction of propagation of wave.
In TEM wave both the electric and magnetic vectors are entirely------ the direction of

propagation of wave.

In mixed or hybrid wave, both the electric and the magnetic vector have components----
the direction of propagation of wave.

For a perfectly conducting planes E¢gngentiar =
The cut-off frequency of wave in between parallel plane conductors is
A waveguide acts as a filter.

Transverse electric waves are called as waves.

Define degenerative modes?

Define Dominant mode.

. Define Attenuation («) in parallel plane waveguide.

SECTION-B
Descriptive questions

1.

Derive the expressions for field components of TM wave parallel plane waveguide.
[CO05]



2. Derive the expressions for field components of TE wave in parallel plane waveguide.
[CO5]

Prove that TEM mode is not possible in parallel plane waveguides. [C05]

4. Derive the expressions for the following parameters of TE wave in parallel plane

waveguide.
1) Cutoff frequency
i) Phase velocity
iii) Free space wavelength
iv) Guided wavelength
V) Group velocity

vi) Transverse electric impedance. [CO5]
5. Derive the expressions for the following parameters of TM wave in parallel plane

waveguide. [C05]
)] Cutoff frequency
i) Group velocity
i)  Cutoff wavelength
1v) Guided wavelength
V) Transverse magnetic impedance

vi) Phase velocity
6. Compare the characteristics of TE waves and TM waves in parallel plane waveguide.
[CO04]
7. Prove that the infinite parallel plane conductors act as high pass filter. Define the terms
Cut off frequency and cutoff wavelength. [c04]
8. Derive TE mode field expressions for guided waves between parallel plates. [C05]

w

Problems

1. A parallel plate waveguide is having a dielectric medium with & =2.25 and ur =1.
Determine its spacing a when its dominant mode cutoff frequency is 5GHz. [C06]

2. A parallel plate waveguide of spacing a= 4cm, is having a dielectric medium with & =4
and ur =1. Determine the TE modes that can propagate when the frequency is 5GHz. Also
find fc and Aq for each propagating mode. [CO06]

3. A parallel plate waveguide of spacing a= 5cm, is having free space medium in between. If
it is excited with fundamental 2GHz and its harmonics, determine all the frequencies that
propagate in TE1o mode. [CO6]

4. A 4GHz wave is propagating in a nonmagnetic medium having a dielectric constant, &r
=2.2. When the phase shift constant is found as 54° /cm, find the cutoff wave number.
[CO06]



5. Find the cutoff frequency of TM2 mode in an air filled parallel plane waveguide. The

spacing between the plates is given as 10 cm. [C06]

6. Find the phase velocity of a mode propagating at 6 GHz in an air filled parallel plane
waveguide. The cutoff frequency of the mode is given as 1.5 GHz. [C06]

7. An air filled parallel plane waveguide carries TM2 mode. The height of the waveguide is 20
cm. If the phase velocity of the mode is 1.5¢, find the frequency and guided wavelength of
the mode. [C06]

8. Find the cutoff frequencies of TM3 and TMs modes of an air filled parallel plane

waveguide having height 20 cm. [C06]

9. An air filled parallel plane waveguide carries TE> mode. The height of the waveguide is 10
cm. if the phase velocity of the mode is equal to velocity of light finds the frequency and

guided wavelength of the mode. [CO06]

10. In a parallel plane waveguide, the phase velocity of TEz mode is 1.5¢c. Find the guided
wavelength of TM. mode inside the waveguide. The waveguide has been filled with a

material having dielectric constant 16 and frequency of the wave is 2 GHz. [C06]

SECTION-C
1. Attenuation constant in Np/m due to conductor loss is [ ]
power dissipated/unit length b 2xpower flow down the guide
2xpower flow down the guide power dissipated/unit length

power dissipated/unit length
power flow down the guide
2. Reflective attenuation comes into being when the frequency of the wave is [ ]

c) None of these

a) Less than cut off frequency b) More than cut off frequency
c) Both (@) and (b) d) None of these






UNIT -V
Rectangular Waveguide

we have considered the case of guided wave between a pair of infinite conducting planes. In this
lecture, we consider a rectangular wave guide which consists of a hollow pipe of infinite extent but
of rectangular cross section of dimension a X b. The long direction will be taken to be the z

direction.

'
P

Unlike in the previous case d /8y is not zero in this case. However, as the propagation direction

. . . 8 a , . "
is along the z direction, we hauea—_ — —y and 70 . We can write the Maxwell's curl
=

equations as

dH,
6—}-' + yH, = iweE,
dH,
—yH, — ax = lweE,
dH, OJH
e * = lweE,
dx ady

The second set of equations are obtained from the Faraday’s law, (these can be written down from

above by E & H,e— —u

dE, .
3y +VE, = —lwuH,
0E, .

—YyE, T —imp:H],
dE dE

¥ X
_ = —lwuH,
dx  dy s

As in the case of parallel plate waveguides, we can express all the field quantities in terms of the
derivatives of E, andH,. For instance, we have,



dy
14 dE,y OH,
=—I|yE
[ (F *oax ) " ay
which gives,
f r2 0 dE, OH.
(f{uE—,} )E =,F —+ —
ayy iwp dx  dy
so that
Y OE, iwupdH;
* k2 odx k* dy
where

k2 =y%+ wlue

The other components can be similarly written down,

y 0E, lwudH, o
k2 dy  k? dx (2)
iwe dE. y OH,
k* dy k? ox
iwe dE; y dH; _
y - o2 - T L2 gag (4)
k= dx k= dy

bt

As before, we will look into the TE mode in detail. Since E,=0, we need to solve for H, from the
Helmholtz equation,

az 2 !
(@ T3zt k* ) H(x,y)=0 (5)

Remember that the complete solution is obtained by multiplying with e Y2+t We solve equation
(5) using the technique of separation of variables which we came across earlier. Let

H:(x,y) = X(x)¥(y)

Substituting this in (5) and dividing by XY throughout, we get,
1d*x 1d?y
S —_ - 1.2
X dx? vdy: 7
where k., is a constant. We further define k2 = k% — k2




We now have two second order equations,
2

X 2

The solutions of these equations are well known
X(x)=Cycoskyx + Cysin k,x
Y(y) = Czcoskyy + Cysink,y

This gives,
H,(x,y) = CiCycoskyxcoskyy + CyCy cosk,xsin kyy
+C2C3 sinkyx coskyy + CoCy sin kyx sinkyy

The boundary conditions that must be satisfied to determine the constants is the vanishing of the
tangential component of the electric field on the plates. In this case, we have two pairs of plates. The
tangential direction on the plates at x=0 and x=aa is the y direction, so that the y component of
the electric field

Ey=0 at x=0,.

Likewise, on the plates at y=0 and y=b,

E.=0 at y=0,

We need first to evaluate E.and E,using equations (1) and (2) and then substitute the boundary
conditions. Since E,=0, we can write eqn. (1) and (2) as

_ lwpdH;
r k2 5‘_1-‘
£ iwu dH,
Yok ax
il
E, = _I{_Z[_Cl C3 Ky cos kyxsinkyy + C;Cy ky cos kyx cos kyy

—C3C3 kysinky v sinky y + C3Cgky sin ky x cos kyy

Wi , . ;
E, = _]{—2[_61 Cs3 ky sin kyxcosky,y — CyCy ke, sink,xsin kyy
+C;C5 kycosk, xcosk,y + C,C4k, cos kyxsink,y]

Since E'), = 0 atx = 0, we must have C; = 0 and then we get,
L
E, =— I(—;[_Cl C3 ky sin kyxcoskyy — €y Cy ky sink,xsin kyy]
Further, since E, = 0 at y=0, we have C, = 0. Combining these, we get, on defining a constant
C = Cng



A .
E, = ;(—ZCI()’ cos kyxsinkyy
fwy ]
E, = ?Ckx sin kyx cos kyy
and
H, = Ccosk,xcosk,y
We still have the boundary conditions, E, = 0aty = band E,, = 0 atx = ato be satisfied. The

former gives k,, = %while the latter gives k, = n;—ﬂ, where m and n are integers. Thus we have,
mm nwy
H, = Ccos (—){) cos (—)
a b

and

2

mi, 2 nir
2 _ 12, 12
=k2+i2=(—) +(3)
However,k? = w?ue + 2, so that,

|
= | E : E ? — 2
= [ () -t
For propagation to take place, y must be imaginary, so that the cutoff frequency below which
propagation does not take place is given by

|
1 |(nm 2 N (rm 2
W, =— [|— —
¢ Jue J'a b
The minimum cutoff is for TE1,0 (or TEo0,1) mode which are known as dominant mode. For these
modes E. (or Ey) is zero.

TM Modes
We will not be deriving the equations for the TM modes for which H,=0 . In this case, the solution
for E,, becomes,

mit ni
E. = E.gsin (— sin (—)
- - a b

As the solution is in terms of product of sine functions, neither m nor n can be zero in this case. This
is why the lowest TE mode is the dominant mode.
For propagating solutions, we have,

where,

1 |,mm2 N 2
ey

© VueVa b
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We have, w’ = #—E—I— mg‘. Differentiating both sides, we have,
dw 1
W—=—
df ,ufﬁ
The group velocity of the wave is given by
_de B Ve ot — w? 1 ||1 w?
i df  wue WHE "~ e \ C w?

which is less than the speed of light. The phase velocity, however, is given by
W w 1 1

I:¢ = — ] N
B Jiey w? —w?  VHE 1 w?

1 . : .
It may be noted that VpVy = = which in vacuum equal the square velocity of light.

For propagating TE mode, we have, from (1) and (4) using E,=0

E‘x_iwlu_wp_fﬁ 1

= |-—/—==1
H. » 3 \e 1 o2 ITE
4 we

where 11z is the characteristic impedance for the TE mode. It is seen that the characteristic

impedance is resistive. Likewise,

o — —NrE

Impossibility of TEM mode in Rectangular waveguides

We have seen that in a parallel plate waveguide, a TEM mode for which both the electric and
magnetic fields are perpendicular to the direction of propagation, exists. This, however is not true of
rectangular wave guide, or for that matter for any hollow conductor wave guide without an inner

conductor.
We know that lines of H are closed loops. Since there is no z component of the magnetic field, such

loops must lie in the x-y plane. However, a loop in the x-y plane, according to Ampere’s law, implies
an axial current. If there is no inner conductor, there cannot be a real current. The only other
possibility then is a displacement current. However, an axial displacement current requires an axial
component of the electric field, which is zero for the TEM mode. Thus TEM mode cannot exist in a



hollow conductor. (for the parallel plate waveguides, this restriction does not apply as the field lines
close at infinity.)

Evanescent wave or mode

This is defined as a wave TEmn or TMmn in which the operating frequency is less than the cutoff
frequency and wave propagation does not take place.

observations regarding TMm, mode :

(1) Similar to that of the parallel plane waveguide the fields exists in the discrete electric and
magnetic field pattern called modes of waveguide.

(2) All field components are sinusoidally in x and y directions.

(3) All transverse fields go to zero if either m or n is zero. In other words, both the indices m and n
have to be non-zero for existence of the TM mode. That is, TMmo and TMo, modes can not exist.
Consequently, the lowest order mode which can exist is TM1; mode.

Substituting E,, we get what is called the dispersion relation for the mode as

o , T 2 m..; 2
F=alue-| 2| -|ZZ
a &
Observations regarding TE mode :

(1) The fields for the TE modes have similar behaviour to the fields of the TM modes i.e they exist in
the form of discrete pattern, they have sinusoidal variations in x and y directions, indices m and n
represent number of half cycles of the field amplitudes in x and y direction respectively and so on.

(2) Unlike TM mode both indices m and n need not be non-zero for the existence of the TE mode.
However, of both the indices zero makes the magnetic field independent of space and therefore
cannot exist. In other words, TEgg mode cannot exist but TEmoand TEg, modes can exist.

(3) The lowest order mode for the TE case therefore would be TEipand TEo;.
Cutt-off Frequecy of TE and TM mode

For both TMmn TEmn and modes the phase constant is given by

AE=CED)
a A

For the mode to be travelling B has to be a real quantity. If B becomes imaginary then the fields no
more remain
travelling but become exponentially decaying




The frequency at which B changes from real to imaginary is called the cut-off frequency of the mode.

At cut-off
frequency therefore B giving

oo = L[ (zmy2 s (22 ]

JE

1 BT 42 HIT 2
= o = + [ —
fo = o P+ ()
As the order of the mode increases the cut-off frequency also increases i.e with increasing frequency

there is possibility of existence of higher order mode.
The very first mode that propagates on the rectangular waveguide is TE10 mode and therefore this

mode is called the dominant mode of the rectangular waveguide.



UNIT-V
RECTANGULAR WAVE GUIDES
Assignment-Cum-Tutorial Questions

SECTION-A

1. Wave in guide travels through
(a) Guide walls (b) dielectric
(c) Both (a) and (b) (d) None

2. The propagation constant pure real implies
(a) Wave without attenuation (b) No wave motion
(c) Wave with attenuation (d) None

3. The propagation constant pure imaginary implies
(a) Wave without attenuation (b) No wave motion
(c) Wave with attenuation (d) None

4. The propagation constant complex implies
(a) Wave without attenuation (b) No wave motion
(c) Wave with attenuation (d) None

5. In TM wave, H can have component
a) Parallel to propagation b) Normal to propagation

c) Both (a) and (b) d) None of these

6. The bandwidth of RWG is
(@) 1:2 (b) 1:3
(c) 1:4 (d) None

7. Dominant mode in rectangular wave guide is given by
a) TE1o b) TEw
C) TEo1 d) TEw

8. Dominant mode in circular wave guide is given by
a) TE1o b) TEu
c) TEo d) TEzw

9. In TE2o of RWG, the number of half waves in x- direction
a) 2 b) 1
c)4 d) 0

10. In TE wave, H can have component
a) Parallel to propagation b) Normal to propagation

c) Both (a) and (b) d) None of these
11. The dimension ratio a/b in RWG is
@1 (b) 3 (c) 2 (d) None

12. In TE wave of a rectangular waveguide, H can have component.
A) Parallel to propagation B) Normal to propagation
C) Both A and B D) None of these

13. In TEs; mode, the number of half wavelengths along y direction is
A)3 B) 1 C) 4 D) 0



14. Purely imaginary propagation constant implies. [ ]

A) No wave propagation B) Wave propagates with attenuation
C) Wave propagates without attenuation D) None of these
15. Cutoff frequency of a rectangular wave guide is given by [ ]
f:2 1 m2 = n2 A n
A) wue 1—; B)Z\/E —t= C) e D) e
1-1& 1-1&
2 2
16. Phase constant of a waveguide is given by [ ]
12 1 m2  n? A n
A)w\/ﬁ 1-; B)Z\/E ?4—? C) — D) —
1—]%2 1—}%2
17. Guided wavelength is given by [ ]
f:2 1 m2 = n2 A n
A) w\/ﬁ _f_z B)Z\/E F'FF C) — D) —
1—fL2 1—}%2

18. Characteristic wave impedance of the rectangular waveguide in TE mode is given by

[ ]

12 1 m2  n2 A n

A)(U HE 1-; B)Z\/ﬁ §+ﬁ C)\/i2 D)\/i2
l—fL 1_fL

f? f?

19. In TM wave the magnetic vector is entirely--- to the direction of propagation of wave.
20. In TM wave the electric vector has a----—- along the direction of propagation of wave.

21. The cut-off frequency of rectangular waveguide is

22. The cut-off wavelength of rectangular waveguide is----------, its guide wavelength is

23. Mode subscripts m and n in rectangular waveguides indicate the no. of half

wavelengths along------ directions respectively.
24. Dominant mode in rectangular guides is-——--- whereas in circular waveguides it is ~—-
25. Cut-off wavelength for dominant mode is equal to 2a where a is --—--- distance
between the sidewalls of the waveguide.
26. Degenerate modes of waveguides are------ modes having same cut-off frequency.
27. Rectangular waveguides are dimensioned with ratio a/b approximately equal to------.
28. In a TE mode [ ]

AE, =0 B)H,=0 C)E,=H,=0 D)f. =0



29. TEM mode propagation is not possible in the following transmission medium. [ ]

A) Co-axial cable B) Two wire transmission line

C) Micro strip lines D) Rectangular waveguide

30. The cut-off wavelength A, for a dominant mode in rectangular waveguide

31. The mode having the lowest cut-off frequency in rectangular waveguide is

32. For an air filled rectangular waveguide, the guided wavelength A is

33. In a TE mnmode of a rectangular waveguide, m and n represents

34. The Dominant mode in the rectangular waveguide is

35. Cutoff wavelength of a rectangular waveguide in TE;, mode is

36. When the broader wall dimension of the rectangular waveguide a = 2.4 cm, find the cutoff

wavelength for dominant mode A, =

37. Guided wavelength (/19) for an air filled waveguide is 8.4 cm. If the same waveguide is filled

with dielectric material of having €, = 4, new A,

38. What is TE, TM waves in rectangular waveguides?

39. Give example of a pair of degenerative modes in rectangular waveguide and justify your

answer.
SECTION-B

Descriptive questions

1.
2.

3.

Define and differentiate phase velocity from group velocity. [C04]

Prove that the velocity of the wave in waveguides is a function of frequency. What is

guide wavelength? [C04]

Prove that the rectangular waveguide is high pass filter. Define the terms cut-off

frequency and cut-off wavelength. [c04]

What is the meaning of mode of the wave? Give a complete description of modal

propagation characteristics of waves in RWGs. [C04]

How the bandwidth of waveguides is defined? How the dimensions of the rectangular

waveguides are selected to give maximum bandwidth. [co4]

6. Derive TE mode field expressions for rectangular waveguide. [C05]

7. Derive the expressions for field components of TE wave in rectangular waveguide.
[CO5]

8. Illustrate the field patterns of TE1o and TE20 modes in rectangular waveguides with
neat sketches. [C05]

9. Explain why TEM mode is not possible in rectangular waveguide. [CO5]

10. State the formulas for the following parameters related to rectangular waveguide

operated in TEmn mode:
i.  Cutoff frequency



ii.  Cutoff wave-number

iii.  Propagation constant

iv.  Wavelength in the waveguide
v.  Phase constant

vi.  Phase velocity
11. Derive the expressions for field components of TM wave in rectangular waveguide.
[CO05]
12. Explain the following: i) Dominant mode, ii) Degenerative modes. [C04]

Problems

1. The dimensions of an air dielectric waveguide working at 5.2GHz are 4.75x2.21 cm. Find

its (@) dominant mode cutoff frequency and (b) guide wavelength. [CO06]
Answers: (a) 3.157 GHz (b) 7.26cm

2. The ratio of dimensions of an air dielectric waveguide are a/b=2. Its dominant mode
cutoff frequency is 850MHz and guide wavelength is 40cm. Find its (a) operating

frequency, (b) dimensions of guide and (b) phase shift constant. [C06]
Answers: (a) 1.13 GHz (b) 17.65 x 8.82cm (c) 15.59 rad/m

3. The ratio of dimensions of an air dielectric waveguide are a/b=2. Its dominant mode
cutoff frequency is 9GHz. When it is designed to work in 12.5 to 19GHz range, find its

dimensions. [CO06]
Answers: 1.66 x 0.83cm

4. A loss-less air-dielectric S-band waveguide, carrying wave in TEiz mode, has inside
dimensions 7.214x3.404cm. When the operating frequency is 1.2 times the cutoff
frequency of the mode, find (a) cutoff wave number (b) cutoff frequency (c) operating
frequency (d) propagation constant (e) cutoff wavelength (f) operating wavelength and (g)

guide wavelength . [C06]
Answers: 102.05 rad/m, 4.87GHz, 5.84GHz, j67.61/m, 6.16cm, 5.14cm, 10.10cm

5. The dimensions of an air filled rectangular waveguide are 4 cm x 2 cm. Find (i) Cutoff

frequency for the dominant mode (ii) guide wavelength at 6 GHz. [C06]

6. The ratio of dimensions of an air filled rectangular waveguide is a/b = 2. Its cutoff

wavelength is 3.32cm. (i) Find the dimensions of the waveguide (ii) Phase shift constant at

12 GHz. [C06]

7. An air filled rectangular wave guide has dimensions of a =7 cm and b = 3.5 operates in the
dominant mode. [C06]
I.  Cutoff frequency
ii.  Phase velocity of the wave in the guide at a frequency of 3.5 GHz.

iii.  Guided wavelength at the same frequency.



8. Consider a rectangular waveguide with dimensions a = 2.29 cm and b = 1.145 cm is filled
with dielectric material having &, = 2.5 and p,=1. The cutoff wavelength and cutoff
frequency for TE1o, TE20 and TM11. [CO6]

9. Find out the cutoff frequencies for TM12 mode in air filled rectangular waveguide whose
dimensions a and b, respectively are (i) 10. x 0.5 cm, (ii) 0.5 x 1.0 cm, (iii) 1.0 x 1.0 cm.
[C06]

10. A standard rectangular waveguide has internal dimensions a = 1.905 cm and, b = 0.953 cm.
the waveguide is air filled and propagates waves at 18 GHz. Calculate the following
parameters for the TM11 mode: [CO6]

i) Critical frequency

i) Guide wavelength

i) Phase constant

iv) Propagation Constant
v) Phase velocity

vi) Wave impedance

SECTION-C
1. The phase velocity v is given by [ ]
— 2

@) V=w/B (b) V :a)/\/a)z,ug—(mﬂ/a)
© Vzl/«/,ugq/H(l//lc)z (d) All

2. The cut off frequency of TEM wave is [ ]
(@) Infinite  (b) Zero (©) Y2rJus (d) None

3. Theratio of E to H is free space intrinsic impedance only in case of [ ]
(a) TEM wave (b) TE wave (c) TM wave (d) None

4. The group velocity vy is given by [ ]

(a) vy =¢*/V (b) V, =Cy1—(m2/2a)’

(c) Both(a) and (b) (d) None
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UNIT-VI
CIRCULAR WAVE GUIDES
Assignment-Cum-Tutorial Questions

SECTION-A
1. Dominant mode in circular wave guide is given by [ ]
a) TE1o b) TE1u ) TEo d) TEw
2. In cylindrical waveguide, the impedance, Zre is given by [ ]

10.
11.
12.
13.
14.
15.
16.

17.

18.
19.
20.
21.
22.
23.
24.

a) flou b au/f ) wflu  d) oup

Possible number of modes that can exist in cylindrical waveguidesis [ ]

a) Zero b) One c)2 d) Infinite

Nonexistent modes in circular wave guides are [ ]

a) TE1wo b) TEoo ¢) both d) None of these

The cut off wavelength of the guided wave is [ ]
_2a f = f=——°

(@) o= m (b) % 2a./ ue © % 2my ue

The Dominant mode in the circular waveguide is [ ]

A)TM 11 B) TE 11 C) TM 10 D) TE 10

(d) None

The waveguide is a filter. [ ]
A) Low pass B) High pass C) Band pass D) Band stop

Degenerative modes are the modes having [ ]
A) Equal cut-off frequencies B) Equal tangential powers
C) Equal wave impedances D) Equal phase velocities

Theoretically, number of modes that can exists in cylindrical waveguidesis[ ]
A) zero B) one C) two D) infinite

The cut-off frequency in circular waveguides for TM mode is
The cut-off frequency in circular waveguides for TE mode is
The cut-off wavelength in circular waveguides for TM mode is
The cut-off wavelength in circular waveguides for TE mode is
The phase velocity in waveguides is whereas the group velocity is
In waveguides, the wave impedance is for TE mode and it is for TM mode.
Reflective attenuation comes into being when wave frequency is--—---- than cut-off
frequency.

Dissipative attenuation comes into being when wave frequency is------ than cut-off
frequency.

The dominant mode in circular waveguides is

The expression for phase velocity in circular waveguides is

The expression for guide wavelength of circular waveguide is

The expression for wave impedance in TE mode of circular waveguide is

The cutoff frequency in circular waveguide for TM mode is

The cutoff wavelength in circular waveguide for TE mode is

How TE and TM modes are defined in circular waveguides?




25. Explain the filter characteristics of circular waveguide.

26. Dominant mode in rectangular guides is-—---- whereas in circular waveguides it is ~---—--
27. Degenerate modes of waveguides are------ modes having same cut-off frequency.
28. The order of mode subscripts m and n in rectangular guides is-—-- whereas in circular
guides it is
SECTION-B

Descriptive questions
1. Describe the modal propagation characteristics in the circular waveguides. How the
mode description of CWGs is different from that of RWGs. [C04]
2. Define different types of impedances of the waveguides and write down expressions
for the impedances in case of CWGs. [C04]
3. What are two types of attenuations that exist in CWGs? Write down general
expressions for both the types of attenuation. [C04]
Derive the field components of TM waves in circular waveguides. [CO5]

Derive the field components of TE waves in circular waveguides. [C05]
TEM mode is not possible in circular waveguide. Justify the statement. [CO5]
[llustrate the field patterns of TMo: and TEo1 modes in circular waveguides with neat
sketches. [CO05]
8. State the formulas for the following parameters related to air filled circular waveguide
operated in TEmn mode: [C05]
i.  Cutoff frequency
Ii.  Propagation constant
iii.  Wavelength in the waveguide
iv.  Phase velocity
9. Define dominant and degenerative modes. Write examples for few degenerative modes
in circular waveguides. [C04]
10. In circular waveguides, TE1o mode is not possible. Justify this? [C05]
11. Which is the dominant mode in circular waveguides? Why TE1o mode is not possible
in circular waveguides? [C05]

12. What is cut off frequency? Derive relation connecting cut off frequency with
dimensions of guide. [C04]
Problems

1. An air-filled circular waveguide has radius of 5cm and act as being operated at 3GHz.
Find its cut-off frequency, cut-off wavelength, guide wavelength and phase velocity
for (a) TE,, and (b)TMOl- [CO6]

2. An air-filled circular waveguide with an inner radius of 1.2 cm is operating in
TMoimode. Determine its cutoff frequency. If it is operating at a frequency of 10GHz,
then find wavelength in the waveguide. [C06]

3. TE11 wave is propagating through an air filled circular waveguide of diameter 8 cm.
the first order Bessel root value for this mode Xnp = ha = 1.841. Then find:

i) Cutoff frequency i) Wave impedance. [CO06]
4. A TE11 wave is propagating through a circular wave guide has a diameter. The

diameter of the guide is 10 cm, and the guide is air filled. Compute the following:

N o ok



i.  Cutoff frequency

ii.  Wavelength in the waveguide
iii.  Phase constant
iv.  Wave impedance. [CO6]

5. An air filled circular waveguide is to have dimensions such that fc = 0.6f for TE1:
mode and is to be operated at 4 GHz. [C06]

1. Determine i) diameter of the waveguide ii) guide wavelength

6. Find i) cutoff wavelength, ii) cutoff frequency, iii) wavelength in the guide for the
dominant mode of operation in an air filled circular waveguide of inner diameter 6
cm. [CO06]

7. A TE11 wave is propagating through a circular waveguide. If the guide is air filled and
the diameter of the guide is 8 cm. Find i) cutoff frequency, ii) guide wavelength for
frequency of 4 GHz, and iii) the wave impedance. [C06]

8. An air filled circular waveguide having radius of 5 cm is being operated at 3 GHz.
Find its i) cut-off frequency, ii) cut-off wavelength and iii) phase velocity for TE11
mode. [C06]

9. An air filled circular waveguide having radius of 1.2 cm is being in TMoz mode.
Determine its i) cut-off frequency, ii) guide wavelength and iii) phase velocity at 10
GHz. [C06]

10. An air filled circular waveguide having radius of 8 cm is being operated at 4 GHz.
Find its i) cut-off frequency, ii) cut-off wavelength and iii) phase velocity for TMo1

mode. [C06]
SECTION-C
1. Degenerative modes in circular waveguides are [ ]
A) TEo: and TM1g B) TMo1 and TEwn
C) TE2 and TM22 D) TE10 and TEo:
2. The guide wavelength 4 is given by [ ]
@ 1=27/B (b) /T=27r/\/a)2,u8—(m7z/a)2
©) A= 27z/ onJueJL+(2/2, ) d) All
3. The phase shift constant 3 of the guided wave is ]

@ f = ue—(mr/a) (0) B =afue 1+ (/1)
(©) B = ofus\1+(4/4 ) (d) All.

4. The cut off frequency of the guided wave is [ ]

(d) None
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