
UNIT – I: Transmission Lines - I  

Types,Transmission Lineparameters,Transmission Line Equations,Primary and 

Secondary Constants, infinite line, Characteristic Impedance, Attenuation constant 

,Phase shift constant, Propagation Constant, Phase and Group Velocities, Wave 

length.  

                        LEARNING OBJECTIVES 

 Upon completion of this UNIT, you will be able to:  

1. State what a transmission line is and how transmission lines are used.  

2. Explain the operating principles of transmission lines. 

 3. Describe the  types of transmission lines.  

4. . Explain the theory of the transmission line.  

6. Define the term LUMPED CONSTANTS in relation to a transmission line. 

 7. Define the term DISTRIBUTED CONSTANTS in relation to a transmission 

line.  

8.  Define the term CHARACTERISTIC IMPEDANCE  

 Measurable Student Learning Outcomes: 

At the completion of the course(UNIT-I), students will be able to…  

1. Identify the characteristics of  transmission lines and transmission line circuits.  

 2. Analyze transmission line circuits.  

                      

 

 

 



INTRODUCTION TO TRANSMISSION LINES 

A TRANSMISSION LINE is a device designed to guide electrical energy from 

one point to another. It is used, for example, to transfer the output rf energy of a 

transmitter to an antenna. This energy will not travel through normal electrical wire 

without great losses. Although the antenna can be connected directly to the 

transmitter, the antenna is usually located some distance away from the transmitter. 

On board ship,the transmitter is located inside a radio room and its associated 

antenna is mounted on a mast. A transmission line is used to connect the 

transmitter and the antenna.  

The transmission line has a single purpose for both the transmitter and the antenna. 

This purpose is to transfer the energy output of the transmitter to the antenna with 

the least possible power loss. How well this is done depends on the special 

physical and electrical characteristics (impedance and resistance) of the 

transmission line. 

TERMINOLOGY 

All transmission lines have two ends (see figure 1-1). The end of a two-wire 

transmission line connected to a source is ordinarily called the INPUT END or the 

GENERATOR END. Other names given to this end are TRANSMITTER END, 

SENDING END, and SOURCE. The other end of the line is called the OUTPUT 

END or RECEIVING END. Other names given to the output end are LOAD END 

and SINK 

   

                            Figure 1-1 Basic transmission line 

You can describe a transmission line in terms of its impedance. The ratio of 

voltage to current (Ein/Iin) at the input end is known as the INPUT IMPEDANCE 

(Zin). This is the impedance presented to the transmitter by the transmission line 



and its load, the antenna. The ratio of voltage to current at the output (Eout/Iout) end 

is known as the OUTPUT IMPEDANCE (Zout). This is the impedance presented to 

the load by the transmission line and its source. If an infinitely long transmission 

line could be used, the ratio of voltage to current at any point on that transmission 

line would be some particular value of impedance. This impedance is known as the 

CHARACTERISTIC IMPEDANCE. 

TYPES OF TRANSMISSION MEDIUMS 

 

The  different types of TRANSMISSION MEDIUMS in  electronic applications. 

 

Each medium (line or wave guide) has a certain characteristic impedance value, 

current-carrying capacity,and physical shape and is designed to meet a particular 

requirement. 

 

The five types of transmission mediums that we will discuss in this chapter include 

PARALLEL-LINE, TWISTED PAIR, SHIELDED PAIR, COAXIAL LINE, and 

WAVEGUIDES. The use of a particular line depends, among other things, on the 

applied frequency, the power-handling capabilities, and the type of installation. 

 

Two-Wire Open Line 

 

One type of parallel line is the TWO-WIRE OPEN LINE illustrated in figure 1-2. 

This line consists of two wires that are generally spaced from 2 to 6 inches apart by 

insulating spacers. This type of line is most often used for power lines, rural 

telephone lines, and telegraph lines. It is sometimes used as a transmission line 

between a transmitter and an antenna or between an antenna and a receiver. An 

advantage of this type of line is its simple construction. The principal  advantages 

of this type of line are the high radiation losses and electrical noise pickup because 

of the lack of shielding. Radiation losses are produced by the changing fields 

created by the changing current in each conductor. 

 



 
                                               
                                             Figure 1-2.Parallel two-wire line. 

Another type of parallel line is the TWO-WIRE RIBBON (TWIN LEAD) 

illustrated in figure1-3.This type of transmission line is commonly used to connect 

a television receiving antenna to a home television set. This line is essentially the 

same as the two-wire open line except that uniform spacing is assured by 

embedding the two wires in a low-loss dielectric, usually polyethylene. Since the 

wires are embedded in the thin ribbon of polyethylene, the dielectric space is partly 

air and partly polyethylene. 

     

  Figure 1-3.—Two-wire ribbon type line. 

Twisted Pair 

 

The TWISTED PAIR transmission line is illustrated in figure 1-4. As the name 

implies, the line consists of two insulated wires twisted together to form a flexible 

line without the use of spacers. It is not used for transmitting high frequency 

because of the high dielectric losses that occur in the rubber insulation. When the 

line is wet, the losses increase greatly. 



 

 

                          Figure 1-4 Twisted pair. 

   Shielded Pair 

 

The SHIELDED PAIR, shown in figure 1-5, consists of parallel conductors 

separated from each other and surrounded by a solid dielectric. The conductors are 

contained within a braided copper tubing that acts as an electrical shield. The 

assembly is covered with a rubber or flexible composition coating that protects the 

line from moisture and mechanical damage. Outwardly, it looks much like the 

power cord of a washing machine or refrigerator. 

 

                                Figure 1-5.—Shielded pair. 

The principal advantage of the shielded pair is that the conductors are balanced to 

ground; that is, the capacitance between the wires is uniform throughout the length 

of the line. This balance is due to the uniform spacing of the grounded shield that 

surrounds the wires along their entire length. The braided copper shield isolates the 

conductors from stray magnetic fields. 

 

 

 

 



Coaxial Lines 

 

There are two types of COAXIAL LINES, RIGID (AIR) COAXIAL LINE and 

FLEXIBLE (SOLID) COAXIAL LINE. The physical construction of both types is 

basically the same; that is, each contains two concentric conductors. 

 

The rigid coaxial line consists of a central, insulated wire (inner conductor) 

mounted inside a tubular outer conductor. This line is shown in figure 3-6. In some 

applications, the inner conductor is also tubular. 

The inner conductor is insulated from the outer conductor by insulating spacers or 

beads at regular intervals. The spacers are made of Pyrex, polystyrene, or some 

other material that has good insulating characteristics and low dielectric losses at 

high frequencies. 

 
                                                        Figure 1-6 Air coaxial line. 

The chief advantage of the rigid line is its ability to minimize radiation losses. The 

electric and magnetic fields in a two-wire parallel line extend into space for 

relatively great distances and radiation losses occur. However, in a coaxial line no 

electric or magnetic fields extend outside of the outer conductor. The fields are 

confined to the space between the two conductors, resulting in a perfectly shielded 

coaxial line. Another advantage is that interference from other lines is reduced. 

 

The rigid line has the following disadvantages: (1) it is expensive to construct; (2) 

it must be kept dry to prevent excessive leakage between the two conductors; and 

(3) although high-frequency losses are somewhat less than in previously mentioned 

lines, they are still excessive enough to limit the practical length of the line. 

 

Leakage caused by the condensation of moisture is prevented in some rigid line 

applications by the use of an inert gas, such as nitrogen, helium, or argon. It is 



pumped into the dielectric space of the line at a pressure that can vary from 3 to 35 

pounds per square inch. The inert gas is used to dry the line when it is first 

installed and pressure is maintained to ensure that no moisture enters the line. 

 

Flexible coaxial lines (figure 1-7) are made with an inner conductor that consists of 

flexible wire insulated from the outer conductor by a solid, continuous insulating 

material. The outer conductor is made of metal braid, which gives the line 

flexibility. Early attempts at gaining flexibility involved using rubber insulators 

between the two conductors. However, the rubber insulators caused excessive 

losses at high frequencies. 

 

                               Figure 1-7 Flexible coaxial line 

Because of the high-frequency losses associated with rubber insulators, 

polyethylene plastic was developed to replace rubber and eliminate these losses. 

Polyethylene plastic is a solid substance that remains flexible over a wide range of 

temperatures. It is unaffected by seawater, gasoline, oil, and most other liquids that 

may be found aboard ship. The use of polyethylene as an insulator results in 

greater high-frequency losses than the use of air as an insulator. However, these 

losses are still lower than the losses associated with most other solid dielectric 

materials. 

 

Waveguides 

 

The WAVEGUIDE is classified as a transmission line. However, the method by 

which it transmits energy down its length differs from the conventional methods. 

Waveguides are cylindrical, elliptical, or rectangular (cylindrical and rectangular 

shapes are shown in figure 1-8). The rectangular waveguide is used more requently 

than the cylindrical waveguide. 

 

 



 

                           Figure 1-8.—Waveguides.       

The term waveguide can be applied to all types of transmission lines in the sense 

that they are all used to guide energy from one point to another. However, usage 

has generally limited the term to mean a hollow metal tube or a dielectric 

transmission line. In this chapter, we use the term waveguide only to mean "hollow 

metal tube." It is interesting to note that the transmission of electromagnetic energy 

along a waveguide travels at a velocity somewhat slower than electromagnetic 

energy traveling through free space. 

A waveguide may be classified according to its cross section (rectangular, 

elliptical, or circular), or according to the material used in its construction (metallic 

or dielectric). Dielectric waveguides are seldom used because the dielectric losses 

for all known dielectric materials are too great to transfer the electric and magnetic 

fields efficiently. 

The installation of a complete waveguide transmission system is somewhat more 

difficult than the installation of other types of transmission lines. The radius of 

bends in the waveguide must measure greater than two wavelengths at the 

operating frequency of the equipment to avoid excessive attenuation.The cross 

section must remain uniform around the bend. These requirements hamper 

installation in confined spaces. If the waveguide is dented, or if solder is permitted 

to run inside the joints, the attenuation of the line is greatly increased. Dents and 

obstructions in the waveguide also reduce its breakdown voltage, thus limiting the 

waveguide’s power-handling capability because of possible arc over.Great care 

must be exercised during installation; one or two carelessly made joints can 

seriously inhibit the advantage of using the waveguide. 

 

 

 

 



LENGTH OF A TRANSMISSION LINE 

 

A transmission line is considered to be electrically short when its physical length is 

short compared to a quarter- wavelength of the energy it is to carry. 

 

A transmission line is electrically long when its physical length is long compared 

to a quarter-wavelength of the energy it is to carry. You must understand that the 

terms "short" and "long" are relative ones. For example, a line that has a physical 

length of 3 meters (approximately 10 feet) is considered quite short electrically if it 

transmits a radio frequency of 30 kilohertz. On the other hand, the same 

transmission line is considered electrically long if it transmits a frequency of 

30,000 megahertz. 

 

When power is applied to a very short transmission line, practically all of it reaches 

the load at the output end of the line. This very short transmission line is usually 

considered to have practically no electrical properties of its own, except for a small 

amount of resistance. 

 

However, the picture changes considerably when a long line is used. Since most 

transmission lines are electrically long (because of the distance from transmitter to 

antenna), the properties of such lines must be considered. Frequently, the voltage 

necessary to drive a current through a long line is considerably greater than the 

amount that can be accounted for by the impedance of the load in series with the 

resistance of the line. 

 

TRANSMISSION LINE THEORY 

 

The electrical characteristics of a two-wire transmission line depend primarily on 

the construction of the line. The two-wire line acts like a long capacitor. The 

change of its capacitive reactance is noticeable as the frequency applied to it is 

changed. Since the long conductors have a magnetic field about them when 

electrical energy is being passed through them, they also exhibit the properties of 

inductance. The values of inductance and capacitance presented depend on the 

various physical factors that we discussed earlier. For example, the type of line 

used, the dielectric in the line, and the length of the line must be considered. The 

effects of the inductive and capacitive reactances of the line depend on the 

frequency applied. Since no dielectric is perfect, electrons manage to move from 

one conductor to the other through the dielectric. Each type of two-wire 

transmission line also has a conductance value. This conductance value represents 

the value of the current flow that may be expected through the insulation. If the 



line is uniform (all values equal at each unit length), then one small section of the 

line may represent several feet. This illustration of a two-wire transmission line 

will be used throughout the discussion of transmission lines; but, keep in mind that 

the principles presented apply to all transmission lines. We will explain the 

theories using LUMPED CONSTANTS and DISTRIBUTED CONSTANTS to 

further simplify these principles. 

 

LUMPED CONSTANTS 

 

A transmission line has the properties of inductance, capacitance, and resistance 

just as the more conventional circuits have. Usually, however, the constants in 

conventional circuits are lumped into a single device or component. For example, a 

coil of wire has the property of inductance. When a certain amount of inductance is 

needed in a circuit, a coil of the proper dimensions is inserted. The inductance of 

the circuit is lumped into the one component. Two metal plates separated by a 

small space, can be used to supply the required capacitance for a circuit. In such a 

case, most of the capacitance of the circuit is lumped into this one component. 

Similarly, a fixed resistor can be used to supply a certain value of circuit 

resistance as a lumped sum. Ideally, a transmission line would also have its 

constants of inductance,capacitance, and resistance lumped together, as shown in 

figure 1-9. Unfortunately, this is not the case.Transmission line constants are  

distributed , as described below. 

 

                           Figure 1-9 .—Equivalent circuit of a two-wire transmission line. 

  DISTRIBUTED CONSTANTS 

Transmission line constants, called distributed constants, are spread along the 

entire length of the transmission line and cannot be distinguished separately. The 

amount of inductance, capacitance, and resistance depends on the length of the 

line, the size of the conducting wires, the spacing between the wires, and the 



dielectric (air or insulating medium) between the wires. The following paragraphs 

will be useful to you as you study distributed constants on a transmission line. 

 

Inductance of a Transmission Line 

 

When current flows through a wire, magnetic lines of force are set up around the 

wire. As the current increases and decreases in amplitude, the field around the wire 

expands and collapses accordingly. The energy produced by the magnetic lines of 

force collapsing back into the wire tends to keep the current flowing in the same 

direction. This represents a certain amount of inductance, which is expressed in 

microhenrys per unit length . Figure 1-10 illustrates the inductance and magnetic 

fields of a transmission line. 

 

                          Figure 1-10.—Distributed inductance 

Capacitance of a Transmission Line 

 

Capacitance also exists between the transmission line wires, as illustrated in figure 

1-11. Notice that the two parallel wires act as plates of a capacitor and that the air 

between them acts as a dielectric. The capacitance between the wires is usually 

expressed in picofarads per unit length . This electric field between the wires is 

similar to the field that exists between the two plates of a capacitor. 

 

                                                   Figure 1-11.—Distributed capacitance. 



Resistance of a Transmission Line 

 

The transmission line shown in figure 1-12 has electrical resistance along its 

length. This resistance is usually expressed in ohms per unit length and is shown as 

existing continuously from one end of the line to the other. 

 

 

                         Figure 1-12.—Distributed resistance.        

Leakage Current 

 

Since any dielectric, even air, is not a perfect insulator, a small current known as 

LEAKAGECURRENT flows between the two wires. In effect, the insulator acts as 

a resistor, permitting current to pass between the two wires. Figure 1-13 shows this 

leakage path as resistors in parallel connected between the two lines. This property 

is called CONDUCTANCE (G) and is the opposite of resistance. 

 

Conductance in transmission lines is expressed as the reciprocal of resistance and 

is usually given in micromhos per unit length. 

 
                        Figure 1-13.—Leakage in a transmission line. 

   CHARACTERISTIC IMPEDANCE OF A TRANSMISSION LINE 

You learned earlier that the maximum (and most efficient) transfer of electrical 

energy takes place when the source impedance is matched to the load impedance. 

This fact is very important in the study of transmission lines and antennas. If the 

characteristic impedance of the transmission line and the load impedance are equal, 

energy from the transmitter will travel down the transmission line to the antenna 



with no power loss caused by reflection. 

 

Definition and Symbols 

 

Every transmission line possesses a certain CHARACTERISTIC IMPEDANCE, 

usually designated as Z0. Z0 is the ratio of E to I at every point along the line. If a 

load equal to the characteristic impedance is placed at the output end of any length 

of line, the same impedance will appear at the input terminals of the line. The 

characteristic impedance is the only value of impedance for any given type and 

size of line that acts in this way. The characteristic impedance determines the 

amount of current that can flow when a given voltage is applied to an infinitely 

long line. Characteristic impedance is comparable to the resistance that determines 

the amount of current that flows in a dc circuit. 

In a previous discussion, lumped and distributed constants were explained. Figure 

1-15, view A,shows the properties of resistance, inductance, capacitance, and 

conductance combined in a short section of two-wire transmission line. The 

illustration shows the evenly distributed capacitance as a single lumped capacitor 

and the distributed conductance as a lumped leakage path. Lumped values may be 

used for transmission line calculations if the physical length of the line is very 

short compared to the wavelength of energy being transmitted. Figure 3-15, view 

B, shows all four properties lumped together and represented by their conventional 

symbols. 



 

               Figure 1-15 —Short section of two-wire transmission line and equivalent circuit. 

              
VOLTAGE CHANGE ALONG A TRANSMISSION LINE 

 

Let us summarize what we have just discussed. In an electric circuit, energy is 

stored in electric and magnetic fields. These fields must be brought to the load to 

transmit that energy. At the load, energy contained in the fields is converted to the 

desired form of energy. 

Transmission of Energy 

 

When the load is connected directly to the source of energy, or when the 

transmission line is short, problems concerning current and voltage can be solved 

by applying Ohm’s law. When the transmission line becomes long enough so the 

time difference between a change occurring at the generator and the change 

appearing at the load becomes appreciable, analysis of the transmission line 

becomes important. 
 

Transmission Line – A two conductor structure that can support a TEM wave. 

 



TEM wave: An electromagnetic wave wherein both the electric and magnetic 

fields are perpendicular to the direction of wave propagation. 

 

A passive, linear, two port device that allows bounded E. M. energy to flow from 

one device to another 

 
                                             Figure 1-16.—Transmission line. 

 
                                       Figure 1-17.—Lumped-element equivalent circuit. 
 

Where: R = resistance/unit length L = inductance/unit length C = capacitance/unit 

length G = conductance/unit length 

 ∴ resistance of wire length ∆z is R∆z. 

 

 Distributed elements 

 

The line parameters R, L, C and G are distributed over the entire length of the 

transmission line. Hence they are called distributed parameters. They are also 

called primary constants. 

 Line parameters of a transmission line 

 



 The line parameters of a transmission line are resistance, inductance, capacitance 

and conductance.  

Resistance (R) is defined as the loop resistance per unit length of the transmission 

line. Its unit is ohms/km.  

Inductance (L) is defined as the loop inductance per unit length of the transmission 

line. Its unit is Henries/km. 

Capacitance (C) is defined as the shunt capacitance per unit length between the two 

transmission lines. Its unit is Farad/km.  

Conductance (G) is defined as the shunt conductance per unit length between the 

two transmission lines. Its unit is mhos/km. 
 

 

The Telegrapher Equations 

Consider a section of “wire”: 

 

 
 



 
                              Figure 1-18.—Lumped-element equivalent circuit. 
 

Where: R = resistance/unit length L = inductance/unit length C = capacitance/unit 

length G = conductance/unit length  

∴ resistance of wire length ∆z is R∆z. 

 

 

 



 
 

 
 



• The functions I(z) and V(z) are complex, where the magnitude and phase of 

the complex functions describe the magnitude and phase of the sinusoidal 

time function e j ω t .  

 

• Thus, I(z) and V(z) describe the current and voltage along the transmission 

line, as a function as position z. 

 

• Remember, not just any function I(z) and V(z) can exist on a transmission 

line, but rather only those functions that satisfy the telegraphers equations. 

 

The Transmission Line Wave Equation 

 

We will combine the telegrapher equations to form one differential equation for 

V (z) and another for I (z). 

 

First, take the derivative with respect to z of the first telegrapher equation: 

 

                            
 

Note that the second telegrapher equation expresses the derivative of I(z) in 

terms of V(z): 

                         
Combining these two equations, we get an equation involving V (z) only: 

                  
 

Where it is apparent that:  



                            
In a similar manner (i.e., begin by taking the derivative of the second telegrapher 

equation), we can derive the differential equation: 

                                   
We have decoupled the telegrapher’s equations, such that we now have two 

equations involving one function only: 

 

                                    
Note only special functions satisfy these equations: if we take the double derivative 

of the function, the result is the original function (to within a constant)! 

 

Therefore, the general solution to these wave equations (and thus the telegrapher 

equations) are: 

                                
where V0

+  ,V0
−, I0

+ , I0
−, and  γ are complex constants. 

 

It means that the functions V(z) and I(z), describing the current and voltage at all 

points z along a transmission line, can always be completely specified with just 

four complex constants (V0
+  ,V0

−, I0
+ , I0

−). 

 

We can alternatively write these solutions as: 

 



   
 

The two terms in each solution describe two waves propagating in the transmission 

line, one wave (V + (z) or I + (z) ) propagating in one direction (+z) and the other 

wave (V - (z) or I - (z) ) propagating in the opposite direction (-z). 

 
Therefore, we call the differential equations introduced in this learning module the 

transmission line wave equations. 

 

The Characteristic Impedance of a Transmission Line 

 

So, from the telegrapher’s differential equations, we know that the complex current 

I(z) and voltage V (z) must have the form: 

 

                                        
Let’s insert the expression for V (z) into the first telegrapher’s equation, and see 

what happens! 



      
 

Therefore, rearranging, I (z) must be: 

 

 

                  

    
For the above equation to be true for all z, I0 and V0 must be related as: 

 
 

Or—recalling that  V0
+ e− γ z  = V+(z)  (etc.)—we can express this in terms of the 

two propagating waves: 

 
Now, we note that since: 

                            
We find that: 

 



Thus, we come to the startling conclusion that: 

 

 
Note that although the magnitude and phase of each propagating wave is a function 

of transmission line position z (e.g., V + (z) and I+ (z)), the ratio of the voltage and 

current of each wave is independent of position—a constant with respect to 

position z. 

 

Although V0
± and I0

± are determined by boundary conditions (i.e., what’s 

connected to either end of the transmission line), the ratio V0
±  I 0

± is determined by 

the parameters of the transmission line only (R, L, G, C). 

 

This ratio is an important characteristic of a transmission line, called its 

Characteristic Impedance Z0. 

 

                            
 

We can therefore describe the current and voltage along a transmission line as: 

                      
or equivalently: 

                       



Note that instead of characterizing a transmission line with real parameters R, G, 

L, and C, we can (and typically do!) describe a transmission line using complex 

parameters Z0 and γ . 

 

The Complex Propagation Constant (γ) 

 

Recall that the current and voltage along a transmission line have the form: 

                       
 

where Z0 and γ are complex constants that describe the properties of a transmission 

line. Since γ is complex, we can consider both its real and imaginary components 

                          
 

Where  α =  Re {γ } and β= Im {γ }. Therefore, we can write: 

 

                                 
Since  e− j β z =1, then e−α z alone determines the magnitude of e−γ z . 

 

 
 

Therefore, α expresses the attenuation of the signal due to the loss in the 

transmission line. 

 



Since e−αz is a real function, it expresses the magnitude of e−γ z only. The relative 

phase φ (z) of e−γ z is therefore determined by e − j β z = e − jφ z only (recall e− j β z = 1). 

 

 

 

From Euler’s equation: 

                     
Therefore, βz represents the relative phase φ (z) of the oscillating signal, as a 

function of transmission line position z. Since phase  φ(z) is expressed in radians, 

and z is distance (in meters), the value β must have units of : 

      

β= φ/ z radians/ meter 

 

The wavelength λ of the signal is the distance z∆ 2π over which the relative phase 

changes by 2π radians. So: 

                       
or, rearranging: 

                                          
Since the signal is oscillating in time at rate ω rad /sec, the propagation velocity of 

the wave is: 

                      
where f is frequency in cycles/sec. 

Recall we originally considered the transmission line current and voltage as a 

function of time and position (i.e. (z, t) and i (z, t)). We assumed the time function 

was sinusoidal, oscillating with frequency ω: 

 

                           



Now that we know V(z) and I(z), we can write the original functions as: 

 

    
The first term in each equation describes a wave propagating in the +z direction, 

while the second describes a wave propagating in the opposite (-z) direction. 

 
Each wave has wavelength: 

                                          
And velocity: 

                                          
Phase and group velocity of waves 

 

 To understand the difference between phase and group velocity of waves, consider 

the following analogy. A group of people, say village gudlavalleru runners, start 

from the starting at the same time. Initially it would appear that all of them are 

running at the same speed. As time passes, group spreads out (disperses) simply 

because each runner in the group is running with different speed. If you think of 

phase velocity to be like the speed of an individual runner, then the group 

velocity is the speed of the entire group as a whole. Obviously and most often, 

individual runners can run faster than the group as a whole. To stretch this analogy, 

we note that the phase velocity vp of waves are typically larger than the group 



velocity vg of waves. However, this really depends on the properties of the 

medium. The media in which vg = vp is called the non-dispersive medium. But the 

media in which vg < vp is called normal dispersion. The media in which vg > vp is 

called anomalous dispersive media. It must be emphasized that dispersion is a 

property of the medium in which a wave travels. It is not the property of the waves 

themselves. The relation between phase and group velocity is given by, vg = dω/dk 

= vp − λ dvp /dλ Generally, ω(k) is called the dispersion relation and indicates the 

dispersion properties of a medium. As this formula predicts, if the phase velocity 

does not depend on the wavelength of the propagating wave, then vg = vp.  

   Figure 1.19: (left) A single travelling wave with frequency ω = 1. (right) A group 

of waves composed of    two waves with frequencies ω = 1 and ω = 1.1. 

 

Briefly phase velocity refers to the velocity of a monochromatic wave, let’s say, 

the velocity of one of the peaks of the wave. For example, a monochromatic wave 

with angular frequency ω = 2πν (ν is the frequency) travelling in +ve x-direction is 

given by, y = A sin (ωt − kx). On the other hand, group velocity refers to a group 

composed of waves within a frequency band ∆ω. Group velocity is the velocity 

with which the entire group of waves would travel. The following figure 1.19 

shows y = sin (2 +t) and y = sin (2 +t) + sin(2 + 1.1t). The last form is the sum of 

two waves whose frequencies differ by 0.1. Notice that the amplitude of the group 

is modulated as a function of t. The example here shows the waves as a function of 

t, but similar scenario holds good for waves as a function of x. For the travelling 

wave shown in the left panel of the figure, phase velocity is the velocity with 

which any one of the peaks progresses. However, for the right panel of the figure, 

the speed of any of the peaks would give the group velocity. 

 

 

 

 

 

 



Assignment-Cum-Tutorial Questions 

A.  Questions testing the remembering / understanding level of students 

I) Objective Questions 

1. A transmission line can be represented as  

a) a circuit which contains R & L in series and G & C in shunt.  

b) a circuit which contains R & G in series and L & C in shunt.   

c) a circuit which contains R & C in series and G & L in shunt.   

d) none of these. 

2. Give the shunt admittance of Transmission line. 

3. Draw the approximate equivalent circuit of length ∆𝑥 of a transmission line. 

4. Primary constants of transmission line are ______________. 

5. Secondary constants of transmission line are ______________. 

6. Series Impedance of Transmission line is given by--------------- 

7. What is the input impedance of Infinite length Transmission line? 

8. What is meant by Phase velocity of Transmission line? 

9. What is the input impedance of transmission line terminated with its Characteristic 

Impedance? 

10. Give the relation between series impedance, shunt admittance and Characteristic impedance 

of Transmission line? 

 

II) Descriptive Questions 

1. What are the different types of Transmission lines? Explain. 

2. Derive the Transmission line Equations. 

3. Derive the input impedance and transmission line equations of Infinite length Transmission 

line. 

4. Show that the input impedance of transmission line terminated with Characteristic impedance 

is equal to characteristic impedance. 

5.  Explain (i) Characteristic impedance (ii) Propagation Constant of Transmission line 

6. Explain  Wavelength, Phase Velocity and Group velocity of transmission line  

 

 



 

B.  Question testing the ability of students in applying the concepts. 

I) 1.  A generator of 1 volt,1000Hz,supplies power to 1000km long open wire line terminated in Z₀ 

(characteristic impedance) and having following parameters: 

R=10.4 ohms,  L=0.0037 Henry,  G=0.8 micromhos,   C=0.00835 mfd.  

Calculate the Phase velocity, Characteristic impedance, Propagation constant. 

2. The primary constants of a line per loop Km are R=196 ohms, C=0.09 mfd, L=0.71Mh and leakage 

conductance negligible. Calculate the characteristic impedance and the propagation constant of 5.00/2π 

Hz. 

3. A transmission line has the following constants                                                                                    

R=10.4 ohms, L=3.66 mH, C=0.00835 mfd, G=0.08microhms. 

   Calculate Z0, α, β and Vp at ω =5,000 radians per sec. 

4.  The parameters of the line are  

               R=65ohms/km, L=1.6 mH/km, C=0.1µF/Km, G=2.25µmho/Km 

               Calculate the characteristic impedance. 

5. An open wire transmission line terminated in its characteristic impedance has the               following 

primary constants    

              R=6 ohms/km  L=2 mH/km   G=0.5 µΩ/km  C=0.005 µ/loop km 

             Calculate the phase velocity and the attenuation in dB suffered by a signal in length of 100km. 

6. A parallel wire line is made up of two copper conductors each of radius 1 mm separated by a distance 

of 30 cm. in air. Conductivity of copper is 5.75Χ10⁷ mho/meter. Calculate the d.c.                                                   

resistance, inductance and capacitance per kilometer of the line. Also calculate the a.c. resistance of the 

line at frequency of 30 kHz. 

II)  

1. The characteristic impedance of a certain line is 710⎳ -16° when the frequency is 1KHz. At this 

frequency the attenuation is 0.01 neper per km and the phase function is 0.035 radians per km. 

calculate the resistance, the leakage, the inductance and the capacitance per km and velocity of 

propagation. 

2. The characteristic impedance of a uniform transmission line is 2039.5 ohm at frequency of 800 

HZ. At this frequency the propagation constant was found to be 0.054⎳87.9⁰.Determine the 

values of line constants R, L, G and C. 

3. An open wire telephone line has R= 10 ohm per km L=0.0037 henry per km, C=0.0083*10⁻⁶ 

farad per km and G=0.4*10⁻⁶ ohms per km. Determine its Z₀, α and β at 1000 HZ. 

4. The constant of a L.F; transmission line per Km are R=6 ohms, L=2.2mH,c=0.005 µF , 

G=0.25micro mho. Calculate at the frequency of 1000Hz.(¡)the terminating impedance for which 

no reflection will be set up in the line.(ii)the attenuation in dB suffered by signal at 1000Hz, 

while travelling a distance of 100Km when the line is properly terminated and the phase velocity 

with which the signal would travel. 

5. A telephone line has resistance of 20 ohms , inductance of 10 mH. Capacitance of 0.1µF , and 

insulation  resistance of 0.1 mega ohm/km. Find the input impedance at angular frequency of 

5000 radian/sec., if the line is very long. 



6. A 12km line is terminated by its characteristic impedance. At a certain frequency the voltage at 

1km from the sending end it 10% below at the sending end. Find the voltage across the load 

impedance   in terms of percentage of the sending end voltage. 

                                                                                                                                                                                                                                                                                                                                                                                                       

 



 

UNIT-I 

TRANSMISSION LINES-I 
Assignment-Cum-Tutorial Questions 

SECTION-A 

1. A transmission line can be represented as      [ ] 

a) a circuit which contains R & L in series and G & C in shunt.  

b) a circuit which contains R & G in series and L & C in shunt.   

c) a circuit which contains R & C in series and G & L in shunt.   

d) none of these. 

 

2. A practical transmission line has propagation constant equal to                     [            ] 

A) α- jβ   B) αβ  C) α+jβ D)  α/jβ 

3. Primary constants of transmission line are ______________. 

4. Secondary constants of transmission line are ______________. 

5. Series Impedance of Transmission line is given by____________. 

6. Give the shunt admittance of Transmission line. 

7. Draw the approximate equivalent circuit of length ∆𝑧 of a transmission line. 

8. What is the input impedance of Infinite length Transmission line? 

9. What is meant by Phase velocity of Transmission line? 

10. What is the input impedance of transmission line terminated with its Characteristic 

Impedance? 

11. Give the relation between series impedance, shunt admittance and Characteristic 

impedance of Transmission line? 

12. If the load impedance of a transmission line is 200 ohms and its characteristic impedance 

is 200 ohms, find out the input impedance?  

13. Write the equations for solutions of transmission lines. 

14. The parameters of the line are R=65ohms/km, L=1.6 mH/km, C=0.1µF/Km, 

G=2.25µmho/Km, Calculate the characteristic impedance. 

15. The lossless transmission line satisfies the following condition(s)  [ ] 

a) R = 0 b) G = 0 c) R = 0 and G = 0 d) 
𝑅

𝐿
=  

𝐺

𝐶
 

SECTION-B 

Descriptive Questions 

1. What are the different types of Transmission lines? Explain.[C01] 

2. Derive the Transmission line Equations. [C01] 

3. Derive the input impedance and transmission line equations of Infinite length Transmission 

line. [C02] 

4. Derive the solutions of transmission line equations terminated with any load impedance. 

[C01] 

5. Show that the input impedance of transmission line terminated with Characteristic 

impedance is equal to characteristic impedance. [C01] 

6.  Explain (i) Characteristic impedance (ii) Propagation Constant of Transmission line. [C01] 

7. Explain Wavelength, Phase Velocity and Group velocity of transmission line. [C01] 



8.   Derive the expression for input impedance of a transmission line terminated with any load 

impedance other than characteristic impedance. [C02]      

Problems 

1. The primary constants of a line per loop Km are R=196 ohms, C=0.09 mfd, L=0.71Mh 

and leakage conductance negligible. Calculate the characteristic impedance and the 

propagation constant of 5.00/2π Hz. [C02] 

 

2. A transmission line has the following constants. R=10.4 ohms, L=3.66 mH, C=0.00835 

mfd, G=0.08microhms. Calculate Z0, α, β and Vp at ω =5,000 radians per sec. [C02] 

 

3. The series inductance and shunt capacitance of a general transmission line are given as           

2 mH/km and 0.005 μF/km respectively. However, series resistance and shunt 

conductance of this transmission line R = G = 0. Calculate the characteristic impedance. 

[C01] 

 

4. The characteristic impedance of a uniform transmission line is 2039.5 ohm at frequency 

of 800 HZ. At this frequency the propagation constant was found to be 

0.054⎳87.9⁰.Determine the values of line constants R, L, G and C. [C01] 

 

5. An open wire telephone line has R= 10 ohm per km L=0.0037 henry per km, 

C=0.0083*10⁻⁶ farad per km and G=0.4*10⁻⁶ ohms per km. Determine its Z₀, α and β at 

1000 HZ. [C02] 

 

6. At 8 MHz the characteristic impedance of a transmission line is 40-j2 ohms and the 

propagation constant is 0.01+j0.018 per meter. Find the primary constants. [C01] 

 

7. A telephone line has resistance of 20 ohms , inductance of 10 mH. Capacitance of 0.1µF , 

and insulation  resistance of 0.1 mega ohm/km. Find the input impedance at angular 

frequency of 5000 radian/sec., if the line is very long. [C01] 

 

8. An open wire transmission line terminated in characteristic impedance has the following 

primary constants at 2 KHz, R=12 Ω/km, L= 4 mH/km, C=0.005 µf/km, G=1µmho/km. 

Calculate the phase velocity and the attenuation in dB suffered by a signal in a length of 

200km.[1nep=8.686 dB] [C02] 
 

SECTION-C 

1. The following are the Secondary constants of a transmission line             [         ] 

A) α, β, λ, f   B) R, L, C, G  C) γ, Z0  D) μ0, ԑ0 

2. Propagation constant of a transmission line = ________________               [         ] 

A) √(𝑅 + 𝑗𝜔𝐿)(𝐺 + 𝑗𝜔𝐶)  B) √
(𝑅+𝑗𝜔𝐿)

(𝐺+𝑗𝜔𝐶)
  C) √

𝐿

𝐶
   D) 

𝜔

𝛽
 

3. Phase velocity of a transmission line =______________________              [        ] 

A) √(𝑅 + 𝑗𝜔𝐿)(𝐺 + 𝑗𝜔𝐶)  B) √
(𝑅+𝑗𝜔𝐿)

(𝐺+𝑗𝜔𝐶)
  C) √

𝐿

𝐶
   D) 

𝜔

𝛽
 

4. Microstrip lines are used in                                 [         ] 



B) PCBs   B) filters  C) vacuum tubes D)  none 
 



Transmission lines and Waveguides(UNIT II) 
 

A. Questions testing the remembrance/understanding level of students 
I. Objective/Multiple choice questions 

1. Eighth-wave line transforms any resistance to impedance with a magnitude equal to -------
of the line 

2. ------- wave line acts as impedance transformer or inverter. 
3. An open circuited line with length < λ/4   is equivalent to--------. 
4. An open circuited λ/4 line is equivalent to-------- circuit. 
5. An loen circuited line with length > λ/4   is equivalent to an--------. 
6. The  impedance of a quarter wave line along its length is pure -------- 
7. The dependence of attenuation on frequency causes-------  
8. Different phase delays of different components cause-------  
9. To avoid delay distortion, the condition to be satisfied is ------- 
10. Distortion-less condition is ------- 
11. Loading is addition of-------    to achieve ------- condition. 
12. Load matching refers to termination of line with ------- 

 
II. Descriptive questions 

1. Derive a relation for RC over the load. 
2. Derive the inter relations between RC and line impedance 
3. Derive the values of SWR for different types of terminations. 
4. Derive an expression for the input impedance of a loss-less line which it is terminated by 

(a) a load Zl (b) open (c) short circuit and draw the suitable sketches. 
 
B. Questions testing the ability of students in applying the concepts 
I. Multiple choice questions 

1. The distortion-less line condition is               
a. a)   b)   
b. c)   d) None of these    

2. The loading of line refers to the connection of           
a. (a)Inductive coils  b) Capacitive boxes 
b. (b)Both (a) and (b)     d) None of these   

3. The input impedance of  quarter wave, λ/4 transformer is         
a. a)  Terminal impedance  b) Terminal admittance  
b. c) Characteristic impedance  d) None of these  

4. The input impedance of  half-wave line i.e.  λ/2 transformer is       
a. a)  Terminal impedance b) terminal admittance  
b. c) Characteristic impedance  d) None of these  

5. The reflection coefficient right over the source is   

a. (a) 

 
 

s o

s o

Z Z
Z + Z     (b) 

 
 

s o

s o

Z Z
Z - Z  

b. (c)  
 

o s

o s

Z Z
Z + Z

      (d) None of these  

R L G C R L G C
R L G C



6. The SWR is meaningful  for             
a. a)  Lossy lines   b) loss-less lines   
b. c) Both (a) and (b)   d) None of these   

7. The SWR can be found from             
a. a)  Magnitude of RC   b) Phase of RC   
b. c) Both (a) and (b)    d) None of these   

8. The SWR is                
a. a)  Constant of line and load  b) varies over the line   
b. c) Both (a) and (b)     d) None of these   

9. The range of SWR is            
a. a)  −1 to 1 through 0  b) +1 to infinity  
b. c)  0 to infinity  d) None of these    

10. The  SWR  for sc or oc terminated  line is          
a. a)  Zero   b) one   
b. c) Infinity   d) None of these    

 
II. Problems 

1. Determine the primary constants, R, L, G, and C for a distortion-less line working at 
300MHz. Given that the line has characteristic impedance,  Zo =75Ω, attenuation 
constant, α=0.12Np/m, and wave velocity, v=1.4×108m/s.     
Answers: 9.0 Ω/m, 5.356×10-7H/m, 16×10-4 ℧/m, 95.22pF/m.  

2. A loss-less 200Ω line is terminated on a load given by (200–j200)Ω. Given that the 
propagation constant is (0.040+j2.25)/m. Find reflection and transmission coefficients at 
load.  
Answers:  0.447∠–1.107,  1.26∠–0.32.  

3. A loss-less 50Ω line is terminated on a load given by 100Ω. The magnitude of voltage in 
incident wave is 20V(rms).    Determine SWR, maximum voltage and currents as well 
minimum voltage and currents over the line.  
Answers: 2, 37.71V, 754.24mA,  18.85V,377.12mA 

4. A loss-less 75Ω line is terminated over a load with impedance (120+j80)Ω. (a)Find RC, 
Γ and SWR ρ. (b) Also work out how far from load the line impedance is pure real.  
Answers:  (a) 0.435∠0.67, 2.54 (b) 0.053λ  

5. A 150Ω loss-less line connects a signal of 1GHz to a load of 200Ω. The load power is 
100mW. Evaluate  (a) voltage RC, (b) VSWR (c) incident and reflected powers and (d) 
positions of  Vmax, Imax , Vmin  and Imin . 
Answers:  (a) 1/7 (b) 4/3 (c) 102.08mW, 2.08mW (d) Vmax and Imin  right over load, Vmin 
and  Imax at a distance of 7.5cm from load. 

6. A loss-less 75Ω line, 5λ/8 in length, is terminated on a load   Zl. Find out its input 
impedance Zin when  (a) Zl= j45Ω     (b)  Zl= 25–j65Ω.  
Answers: (a)  j300Ω (b)  (13.90+j2.87) Ω.  

7. Determine the input impedance  of a short circuited 50Ω  coaxial line  with β = 8.5rad/m 
when line length is (a)15cm(b)1.5m(c)3λ/4 and (d)λ/8.      
Answers: (a) j164.08Ω, (b) j9.29Ω, (c) j20.93kΩ, (d) j50Ω    

 
C. Questions testing the Analyzing/evaluating/creative abilities of student 

1. Differentiate  SWR from  RC. 



2. Analyze and derive an expression for voltage and current of SWR over the line. 
 

3. What is distortion-less condition? Derive the relation for distortion-less line condition on 
the primary constants.  

4. What is loading ? Discuss different types of loading methods mentioning their relative 
merits and demerits.  

5. What are properties and applications of eighth wave line, quarter wave line and half wave 
line? Given a list of their applications. 

  
D. Previous GATE/IES questions 

1. A transmission line with a characteristic impedance of 100Ω is used to match a 50 
Ω section to a 200 Ω section. If the matching is to be done both at 429MHz and 1GHz, the 
length of the transmission line can be approximately(GATE2012) 
(A) 82.5cm     (B) 1.05m    (C) 1.58m    (D) 1.75m    Ans C 
2. A transmission line of characteristic impedance 50Ω is terminated in a load impedance 
Zl. The VSWR of the line is measured as 5 and the first of the voltage maxima in the line is 
observed at a distance of λ/ 4from the load. The value of Zl  is (GATE2011) 
(A) 10 (B) 250 (C) (19.23 + j46.15) (D) (19.23 – j46.15)    Ans B 

  



LINE DISTORTION 
The deviation of the signal waveform at the output of the line from that at its input 

terminals is called line distortion. It is due to the fact that all frequencies in the waveform do not 
have same attenuation and same delay during the propagation. The characteristic impedance, 
attenuation and velocity of propagation on the line, by being functions of frequency are all 
causes of this deformation. The total deviation of the waveform from its originality is considered 
as sum of two components, namely, frequency distortion and delay distortion.   

Frequency distortion is due to various frequency components of the signal undergoing 
different amounts of attenuation when the attenuation constant α is function of frequency. To 
eliminate this distortion the attenuation constant α must be made independent of frequency. 

Phase or delay distortion is due to different frequency components of the signal 
undergoing different amounts of phase delays while reaching the destination, thus spoiling the 
original phase relation among them. To eliminate this, phase shift constant β must be made 
proportional to angular frequency ω. 
Equalizers : Frequency distortion can be reduced by cascading lines with networks known as 
'equalizers'. Equalizer is a network whose attenuation versus frequency characteristic is just 
opposite to that of the line. Delay distortion can also be reduced with equalizers, but it must be 
designed in such a way that β for total circuit is proportional to ω. For audio transmission, only 
frequency distortion is serious problem whereas for video transmission both, frequency as well 
as phase distortions, cause severe trouble. 
Distortion-less line : By definition, distortion-less line is one which transmits the input signal 
without any distortion. It can be found that a line becomes distortion-free when its primary 
constants are related by, 

 CR LG         (15.1) 

This mathematical condition for distortion-free transmission is known as Heaviside Condition as 
it was derived by Oliver Heaviside first time in 1887. 
Proof: For the line to have neither frequency nor delay distortion, its attenuation constant and 
velocity of propagation should be independent of frequency.   

As the propagation velocity is  given by, v=ω/β, for it to become frequency independent, 
the phase shift constant, available in Eq.(13.25), must be a direct function of frequency. It can 
happen only when the second radical is equal to (RG+ω2LC). Enforcing this condition, it can be 
obtained that,  

  0LG CR CR LG     
Then, the phase shift constant becomes,  

 

       (15.2) 
which is proportional to angular frequency, ω  making the  propagation velocity independent of 
frequency, thus eliminating delay distortion. The propagation velocity, for this case, becomes,

 

     
(15.3) 
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One can also be observed that, when the second radical is equal to (RG+ω2LC), the expression 
for attenuation constant, available in Eq.(13.24), becomes frequency independent. Enforcing this 
condition on the radical gives,  

  0LG CR CR LG     
With this incorporated, the attenuation constant becomes independent of the frequency, given by 

 

RG
      

 (15.4) 
In addition to v, β and α, it is also instructive to consider the expression of characteristic 
impedance for distortion-less line. Incorporating Eq.(15.1) into it, results in,  

 
 o
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



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
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





L
C

    (15.5) 

 In Table 15.1, the relation between distortion-less line and loss-less line is summarized. 
Consider the products αZo, α/Zo, Zo/v and 1/Zov giving R, G, L  and C, respectively.  These 
relations, thus, suggest a way by which one can determine the primary constants of a distortion-
less line, when attenuation constant, characteristic impedance and phase velocity are given. 

 
Loading: In actual lines, the primary constants are such that R/L>>G/C, because of  lower values 
of G. To make the line distortion-less by enforcing Eq.(15.1), the usual practice is to decrease 
R/L  instead of going for the increase of G/C  for reasons, like increase in G leads to increase in 
losses and inefficient operation etc. The decrease in R/L is achieved, usually, by increasing the 
inductance, L instead of going for a decrease in R as it requires large conductors, large copper 
and hence, it is costly to go for a reduction in R. Increase in L is affected either by changing the 
line configuration or by connecting highly inductive coils to the line. The method of increasing 
the series inductance of line using inductive coils is called 'loading'.  
Table 1  Distortion-less line versus loss-less line. 

 
 
 
 
 
 
 
 
 

Loading coils are traditionally known as Pupin coils after Mihajlo Idvorski Pupin (1858 –
1935), a Serbian American physicist and physical chemist, and the process of inserting them is 
sometimes called pupinization. The concept of loading coils was a discovery of Oliver 
Heaviside in the 1860s. He found that added inductance was essential to avoid attenuation and 
time delay distortion of the transmitted signal.  

Permalloy and Mu-metal are two alloys widely used in the design of loading coils. The 
first one is a magnetic nickel-iron annealed alloy with higher magnetic permeability is a 
discovery of Gustav Elmen in 1914. The second one, Mu-metal, invented in 1923 by a telegraph 

 2 2 2 2 2 2 21 ( )( )
2

RG LC R L G C        
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S.No. Properties  Distortion-less line Loss-less line 
1. Primary constants     R L G C  0R G   

2. Characteristic impedance 
o L CZ  o L CZ  

3. Attenuation constant RG   0   
4. Phase shift constant LC   LC   
5. Wave velocity over line 1v LC  1v LC  



company in London, has magnetic properties similar to permalloy, but it has increased ductility 
with the addition of copper and allows the metal to be drawn into wire. Compared to permalloy,  
Mu-metal cable is easier to construct,  and also its construction lends itself to a variable loading 
profile.  Loading is of three types: lumped loading, continuous and patch loading and all are 
described briefly below. 
Lumped loading: In this method, as shown in Figure 1(a), relativiely high inductance coils are 
introduced at definite and uniform intervals along the length of the line to increase its inductance. 
In earlier days, the loading coils used to be two windings on a iron dust or permalloy dust cores. 
Presently, however, molybdenum permalloy dust cores are being used, as they give high 
inductance with a rather small coil. It was Heaviside who first made the proposal, in 1893, of 
using discrete inductors at intervals along the line. 

Figure 1 Loading methods. (a) Lumped loading and (b) continuous loading.  
Continuous loading: The introduction of heavy loading coils in submarine telephone and 
telegraph cables can subject them to undue strain at the points of insertion. To avoid this issue, 
continuous loading, as shown in Figure 1(b), is used. The tape of steel or some other magnetic 
materials, such as 'perm alloy' or 'mumetal' is wrapped around the conductor to be loaded. As 
such loading distributes the inductance continuously along the line, it causes the line to behave 
like one with distributed constant. It increases the permeability, μ of the surrounding medium and 
thereby increasing the inductance.  It is costly, and hence, used in sub-marine cables only.  
Patch loading:  Lumped loading is cheaper but it suffers with the drawbacks of a definite cutoff 
frequency and difficult seals. Continuous loading, on the other hand, is expensive and hence can 
be done only when it is absolutely necessary. A compromise method is patch loading, whereby 
the cable is continuously loaded in repeated sections, leaving the intervening sections unloaded. 

Negative side of loading coils is that they cause distortion to higher frequencies, 
associated with digital signals, and hence, their presence in the line is not conducive for high 
speed data transmission. They are, however, highly useful to boost analog voice frequencies and 
are usually placed in local loops longer than 18,000 ft. In the current era, coils are hardly being 
used as they are superseded by higher technologies. 

  



.   

REFLECTION COEFFICIENT 
  To define RC, consider a line connected to a sinusoidal source and terminated over an 
arbitrary impedance. In the steady state, it can be found the existence of two waves over the line: 
one travelling towards the load, incident wave and the other towards the source, reflected wave. 
Each one these two waves  is associated with voltage as well current. In general, the magnitude 
of the incident wave depends upon the source-line matching at the input end and that of the 
reflected wave depends upon the load-line matching at the termination end. 

   
 Figure 2 Defining  Reflection Coefficient and Transmission Coefficient over a line.  
With respect to this line, the vector ratio of voltage of in the reflected wave, Vref to that in the 
incident wave, Vinc at an arbitrary point over the line is defined as Reflection Coefficient (RC) at 
that point and is usually denoted by Г (Gamma). Mathematically,   

  
&refref

ref inc
inc inc
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VV

Γ Γ Γ V V
V V

    

As the voltages Vref and Vinc are phasors, they are complex, and hence, their ratio, the RC is a 
complex quantity, denoted by bold face Greek letter, Γ and it′s magnitude by light face letter i.e., 
Г=| Г |.  

 It can be easily shown that the ratio of currents in reflected and incident waves is equal to the 
negative of ratio of voltages of those waves. Accordingly, one can define the RC in terms of 
currents ratio also:  the negative of ratio of current of the reflected wave to that of the incident 
wave. Mathematically,  

  

ref ref

inc inc

 
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Γ
V I

          

  For any passive line, the voltage amplitude in the reflected wave can never be more than 
that of the incidence wave, reflected wave is part of incident wave. Accordingly, the magnitude 
of the RC can never be more than one, always in between 0 and 1. In general, RC varies from 
point to point over the line and its range is from '–1' to '1' through '0'. In case of loss-less lines, 
however, the magnitude of RC remains same over the entire line. For this type of lines, as the 
magnitudes of the voltages, Vref and Vinc  remain constant, the magnitude of RC which is their 
ratio, also remains same at all points over the line.  
    
  The magnitude of the RC over the load depends upon the terminating impedance. When 
the load is matched i.e. load impedance is equal to characteristic impedance, no reflected wave 
exists, and hence, the magnitude of RC becomes zero. For non-dissipative loads, like open 



circuit, short circuit and pure reactances, the incident wave gets reflected completely, and hence, 
it becomes equal to one. For other types of loads, the magnitude lies in between 0 and 1. 
 The phase of the RC is the difference of phases of reflected wave and incident waves. As 
these phases vary form point to point over the line, the phase of RC also changes accordingly, as 
shown in the Figure 14.1. Consider  the location of Vmax. Maximum occurs when reflected and 
incident waves are in phase, leading to phase of RC there as zero, and hence, it may be 
considered as phase reference. When points towards source are considered, the phase is negative 
and keep on increasing, reaching ‒π at next minimum, ‒2π at next maximum,  ‒3π at next 
minimum and so on so forth. When points towards load are considered, the phase is positive and 
keep on increasing, reaching π at next minimum, 2π at next maximum,  3π at next minimum and 
so on so forth. 

 Figure 3 Phase of RC, θ at Vmax and Vmin over loss-less line. (a) Actual phase and (b) 
effective phase.   
 
Now, if a Vmax is considered, there the phase is 0, left side it is negative falling to ‒π  at the next  
Vmin, right side it is positive increasing to π at the next Vmin. Now, if a Vmin is considered, there 
the phase is ±π, left side it is positive decreasing to 0 at the next  Vmax, right side it is negative 
increasing to 0 at the next Vmax. 

.    
  In the standing wave pattern, the coefficient assumes pure real values at maxima and 
minima points. It is positive at voltage maxima(or current minima) and negative at minima (or 
current maxima) points of the pattern. Maxima occur due to constructive interference at points 
where reflected and incident waves differ in phase by –2(k–1)π and minima occur due to 
destructive interference at points where reflected and incident waves differ in phase by – (2k–
1)π, here k is integer i.e.,  k =1,2,3,.. etc. In either case, from the definition, one can see that the 
RC is pure real there.  
 Another parameter related to  RC is transmission coefficient. When line is  terminated on 
a mismatched load,  the power incident over the load goes into it only partly, the remaining being 
reflected back. Transmission coefficient denotes the power flow into the load.  By definition it is 
given by 

 

Transmitted voltage or current
Incident voltage or current

tr tr

inc inc

  
V IT
V I

     

The transmission and reflection coefficients over the load are related through, 

 
1 l T           

The incident wave plus  reflected  wave gives the transmitted wave at  the load. Hence, 

 1 1
l l

l l l tr
tr ll l

e ee e e
e e

  
   

        
V VV V V T
V V

 
  

              



The reflection coefficient over load, Γl is related to load impedance, and hence, transmission 
coefficient also can be expressed in terms of load impedance.  

  21l o l
l l

l o l o


    

 
Z Z ZT
Z Z Z Z

   

The connecting relation between transmission and RCs is, 

 
 2 21l

l
o

 
ZT
Z

         

The powers carried by incident, reflected and transmitted waves, respectively, are,  

  
22 2 ( )( ) ( ), &

2 2 2

ll l
tr

o o l

ee e   VV V
Z Z Z

 

 

The difference of incident and reflected powers, naturally is transmitted power. Hence,  

   
22 2

2 2( )( ) ( ) 1
2 2 2

ll l
tr l

l
o o l o

ee e  

    
V ZV V T

Z Z Z Z

 

  

In the above two relations, notice that transmission coefficient becoming 1 when load is matched 
i.e. Zl = Zo , indicating complete transmission into load.  The RC at an arbitrary point over a 
uniform line can be expressed in terms of receiving end impedance, Zr or sending end 
impedance, Zs. The procedures for the derivation of these relations are given below.  
 
     ---------------------------------------------------- 
Example  Find voltage and current RCs and also characteristic impedance of a uniform line 
having incident wave voltage and currents as 50∠0.50V and 0.667∠0.35A  and those on reflected 
wave as 10∠0.65V and 0.133∠−2.64A   
Also mention whether the line is loss-less or lossy.  
Solution: 
Voltage RC is, 

10 0.65 0.133 2.640.2 0.15
50 0.50 0.667 0.35

ref ref

inc inc

 
      

 

V I
Γ

V I
 

Current RC is found as, −0.2∠0.15V. It is verified that current RC is ratio of current in reflected 
wave to current in incident wave, also negative of voltage RC.  The characteristic impedance is,  

50 0.50 75 15
0.667 0.35

refinc
o

inc ref


      



VVZ
I I

 

Characteristic impedance is found as 75∠15V. It is verified that characteristic impedance is equal 
to negative of ratio of  voltage to current  ratio  in the reflected wave.  
Example A 75Ω loss-less line has a voltage of 60∠0.2V in its forward wave. The RC is found 
as1∠ 0.3 at that point. Find voltage and currents of the total wave.   
Solution: 
Voltage in the reverse wave is  

1 0.3 60 0.2 60 0.5Vref inc      V ΓV  
Current in the forward wave is 

60 0.2 0.8 0.2A
75 0

inc
inc

o


   


VI
Z

 

Current in the reverse wave is  



1 0.3 0.8 0.2 0.8 2.642Aref inc        I ΓI  
Total voltage is sum of voltages in incident and reflected waves, and hence,   

60 0.2 60 0.5 118.65 0.35Vinc ref       V V V  
Total current is sum of currents in incident and reflected waves, and hence,   

0.8 0.2 0.8 2.642 0.24 1.22Ainc ref       I I I  
Example A (50+j0.2)Ω line is terminated on a load of impedance (a) (75+j50)Ω  and  (b) 
(75‒j50)Ω. Determine RC and transmission coefficient over load.   
Solution: 
(a) Zl=(75+j50)Ω:: The RC and transmission coefficients over load are 

 75 50 50 0.2 0.414 0.72
75 50 50 0.2

l o
l

l o

j j
j j

   
   

   
Z Z
Z Z

  

 2 2(75 50) 1.34 0.206
75 50 50 0.2

l

l o

j
j j


   

   
ZT

Z Z
 

As cross check,  
 1 1 0.414 0.72 1.34 0.206l       T  
(b) Zl= (75‒j50)Ω :: The RC and transmission coefficients over load are  

 75 50 50 0.2 0.417 0.73
75 50 50 0.2

l o
l

l o

j j
j j

   
   

   
Z Z
Z Z

  

 2 2(75 50) 1.34 0.21
75 50 50 0.2

l

l o

j
j j


  

   
ZT

Z Z
 

As cross check,  
 1 1 0.417 0.73 1.34 0.21l       T  
    ------------------------------------------------------- 
Reflection Coefficient-Receiving end impedance 
Consider voltage and currents at a point P located at a distance of  d from the receiving end over 
a line, terminated over an impedance Zl , carrying a current Il  with a voltage Vl  across, leading 
to Vr = Vl , Ir = Il and Zr = Zl in Eq. (13.51).  Recognizing the first term as incident wave and the 
second term as reflected wave, one can write that the RC at the point, P  as,   

  

 
 

 
 

2
d

ref r o r o d
d

inc r o r o

e
e

e


 

 
γ

γ
γ

V Z Z Z Z
Γ =

V Z + Z Z + Z
     

These voltage and currents can be expressed in terms of this RC as, 

       1 & 1
2 2

d dr r
r o r o

o

e e     γ γI IV Z Z I Z Z
Z

     

 
Right over the load,  d = 0 and  Zr = Zl  and hence, the RC exactly over the load, Гl , becomes   

  

 
 

 
 

2l o l o
l

l o l o

e γ0Z Z Z Z
Γ = =

Z + Z Z + Z
     (14.9)   

 



Figure 4 RC at load end and at an arbitrary point.  
As  Гl is a complex quantity, it can be written in terms of its magnitude, |Гl| and phase, θl as,  

   
lj

l l e Γ Γ         
The Гl can also be expressed in terms of the normalized load impedance as, 

  

 
 

 
 

1 1
1

o l o l
l

o l o l

 Z Z Z z
Γ = =

Z Z Z + z +1
      

Here zl is normalized load impedance. It is also possible to express the RC at a point P in terms 
of its value at load, as follows: 

  

 
 

2 2l o d d
l

l o

e e  γ γZ Z
Γ = = Γ

Z + Z
       

Substitution of  Гl from Eq. (14.10) and  γ= α + jβ in the above relation results in,  
 2l j dj

l le e     Γ Γ Γ        
Hence, the RC Г at a distance of  d  from the load end,  is  Γ= Γl e-2γd  with a magnitude,  Γ= |Γl| 
e-2αd  and with a phase of  (θl –2βd). 
  Note that one can obtain the same result using expressions for current, available in 
Eq.(13.51b). In case of loss-less line, the RC everywhere has the same magnitude including over 
the load. In case of lossy line, the reflected wave becomes smaller and the incident wave larger 
with increasing distance from the load causing |Г| to decrease accordingly. Salient features and 
relations pertaining to RC are illustrated in Figure 14.3. 

   Figure 5  Illustrating the salient features of RC.  
Another aspect, to be considered here, is that regarding the relation between the total voltage and 
currents with the voltages of the incident and reflected waves at the load end, through load RC. 
These relations are given by  

  

   &
1 2 1 2

l l o l l ol l l
inc refload load

l l


 

V + I Z V I ZV Γ VV = = V = =
Γ Γ  

  

 

     
    

 2 2ld j d
l le e e        



Derivation: Consider the total voltage across the load, which is sum of the voltages in the 
incident and reflected waves, and in terms of Гl  it can  be expressed as,  

  
 1l inc ref inc lload loadload
V = V + V = V Γ   

Rearranging the above relation results in,  

   1
l

inc load
l

VV =
Γ

 

Substituting the expression for Гl available in Eq. (14.10) in the above expression, one can 
obtain, 

  1l inc lload V = V Γ  
 

1 l o
inc load

l o

 
 

 

Z Z
= V

Z + Z  
2 l

inc load
l o

 
 
 

Z= V
Z + Z

 

Thus, one can have incident voltage at load in terms of load voltage and currents as, 

  2 2
l o l l l o

inc lload
l l

   
   

   

Z + Z V Z + V ZV = V
Z Z 2

l l o   
 

V + I Z  

 This completes the proof for first part of Eq.(14.13). By noting that reflected wave voltage is 
product of incident wave voltage with RC and following a procedure which is similar to the 
above, one can easily obtain the relation available in second part  
 
  Reflection Coefficient- Sending end impedance 
 
Consider the expression for voltage and currents, at a point, P located at a distance of x from the 
sending end over the line.  Recognizing the first term as incident wave and the second term as 
reflected wave, one can write the RC at the point, P is  

  

 
 

 
 

2
x

ref s o s o x
x

inc s o s o

e
e

e
 

 
γ

γ
γ

V Z Z Z Z
Γ =

V Z + Z Z + Z
     

The voltage and currents over the line can be expressed in terms of this  RC as, 

       1 & 1
2 2

x xs s
s o s o

o

e e      γ γI IV Z Z I Z Z
Z
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  Figure 14.4 Reflection coefficient at sending end and at an arbitrary point. 
At the sending end i.e. exactly over the source, x = 0 and the RC becomes,  

  

 
 0

s o
s at x

s o


Z Z
Γ = Γ =

Z + Z
       

As  Гs is a complex quantity and can have both magnitude, |Гs|  as well as phase, θs. Hence,   



  sj
s s e Γ Γ          

The RC at the source end can also be expressed in terms of the normalized load impedance. 

  

 
 
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1 1
1
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Figure 14.5 Inter-relation between RCs at different points over the line.   
Then, RC at the point, P in terms of  Гs becomes 

  

 
 

2 2s o x x
s

s o

e e
 γ γZ Z

Γ = = Γ
Z + Z

       

Substitution of Гs from Eq.(14.16) and  γ = α + jβ  in Eq. (14.18a) results in,  

  
   22 2 ss j xj xj x

s se e e e      Γ Γ Γ       
STANDING WAVE RATIO  
  The Standing Wave Ratio, or SWR, is one of the most important parameters used to 
describe,  and also to quantify standing wave pattern over a loss-less line. It gives an indication 
of the amount of mismatch or reflected wave over the line. Note that this parameter is relevant 
only for loss-less lines. 
  SWR is defined as the ratio of maximum to minimum voltage in a standing wave pattern 
over a loss-less line. It can also be defined as the ratio of maximum to minimum current in 
standing wave pattern .However, it can be found that both are equal. SWR is denoted by 'ρ'(rho) 
and is always a dimensionless, pure real quantity, with value ranging from one to infinity. 
Mathematically, it can be defined as, 

  

max max

min min

 
V I
V I

         

 Figure 7 Definition of SWR. (a) Voltage waveform and (b) current waveform. 
 



SWR can be considered as an indication/measure  of amplitude ratio of reflected to incident 
waves. Thus, a value of unity for SWR denotes the absence of a reflected wave, while a very 
high SWR indicates that the reflected wave is as large as the incident wave. The SWR, can be 
shown, as infinite when the termination is open- or short-circuit or non-dissipative pure 
reactance. 

 Figure 8 Relation between SWR and magnitude of RC.  
SWR is related to RC and, in fact, it can be considered as a means of expressing the magnitude 
of the RC, 'Г' when the line is loss-less. The exact analytical relation between the two can be 
specified either by expressing SWR in terms of  Г as,  

     
1 1
1 1


  

 
 

Γ
Γ

       

Or by expressing Г in terms of SWR as,
    

   

1
1





  


Γ         

Proof:   SWR, by definition is ratio of |Vmax| to |Vmin|. But voltage maximum occurs when 
incident and reflected waves interfere constructively, and hence, there the amplitude of the wave 
is sum of incident and reflected ones i.e. |Vmax|=|Vinc |+|Vref | . The voltage minimum occurs when 
incident and reflected waves interfere destructively, and hence, there the amplitude of the wave 
is difference of incident and reflected ones i.e. |Vmin|=|Vinc |–|Vref |. Introducing these two aspects 
in the defining relation,  

 

max

min

1 1 1
1 11

inc ref ref inc

inc ref ref inc


   
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The above relation can easily be manipulated to get that 

         1 1 1 1            
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



 


     

Note that, from the value of the RC, it is possible to find SWR. However, from SWR, it is 
possible to find only the magnitude of RC but not its phase.  
  



SWR for different loads 
 The SWR assumes values depending upon the load. Its values for different types of loads are 
shown in Table 14.2. The necessary proofs are given hereunder.   
   Table 14.2 Values of SWR for various types of loads.  
 

 When the termination is matched i.e. Zl = Zo , the SWR assumes a value equal to  one. 
Proof: 
 When the termination is matched(load matching is discussed completely in chapter 15), total 
power of the incident wave goes into the load, and as a result,  the reflected wave becomes nil. 
As a consequence, only forward traveling wave exists over the line and as it is loss less, the 
amplitudes of the oscillations at all points over the line remain same. Hence, there exists no 
maxima points or minima points over the line, making |Vmax|=|Vmin|,  resulting in SWR of unity. 
 
 When the termination is pure reactance or open circuit or short circuit, the SWR is infinity. 
Proof: 
 When the termination is one of the three categories i.e. pure reactance or open circuit or short 
circuit, then load can absorb no power from the incident wave. Thus, the entire incident wave 
gets reflected, the reflected wave is as strong as the incident wave. As the amplitudes of the 
incident and reflected waves are same, perfect cancellation takes place at the points of minima, 
making the minimum voltage Vmin=0, resulting in an SWR of infinity. 
 When the termination is pure resistance i.e. Zl = Rl, then the SWR is either Zo/Rl or Rl /Zo , 
which ever is more than one. 
Proof: 
The SWR is related to the magnitude of the RC through,  
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
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Γ
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Even though the RC varies from point to point over the line, its magnitude remains same over the 
entire line, including the load point, provided the line is loss-less. Hence,  

    

l o
l

l o


 


Z ZΓ Γ
Z Z

 

In the present case, where the line is loss less, the characteristic impedance Zo is real and as line 
is terminated over a pure resistance, the load Zl   is also a real quantity. In addition, these two are 
positive quantities and under such circumstances,   

   l o l o  Z Z Z Z  if l oZ > Z  

 S.No. Type of Load SWR 
1.  Matched termination One (1) 
2.  Open circuit or short circuit or pure 

reactance Infinity(∞)  

3.  
Pure resistance  
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0

0
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min

l
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 
Z , Z
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4.  
Complex impedance 
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    o l Z Z  if o lZ > Z  

   l o l o  Z Z Z Z   
Substituting these values into the expression for SWR results in 
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Firstly, consider the case in which l oZ > Z ::  
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Next, consider the situation where o lZ > Z ::  
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Thus, the SWR is Zo/Rl (for Zo> Zl ) or Rl /Zo (for Zo< Zl ). In other words, SWR is one of these 
two ratios, whichever is more than one, and hence, mathematically, it can be expressed as, 
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 When the termination is complex impedance, then SWR can be found, first finding the 
magnitude of the RC over the line by using, 
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And then the SWR by using Eq. (14.41a). Or one can find it using the Smith chart also. 
Significance of SWR 
There is a lot of significance for SWR particularly at high frequencies like microwaves, where 
the lines are essentially loss-less. Its importance stems from the following facts:  

 It is a quantity that is easily measureable, where as its competitor, RC, being complex, 
difficult to measure.   
 It provides a means by which one can estimate the terminating impedance of loss less line.  
 It can also a measure of the extent to which a reflected waves exist on the system. 

SWR versus RC 
Even though both these parameters are used to describe the mismatch and reflections over the 
line, there exist some fundamental and basic differences, listed below, between them. 

1. RC can be defined both for lossy as well as loss-less lines, where as the standing wave ratio 
is meaningful only for loss-less lines. 

2. RC varies from –1 to +1through 0, in general a complex quantity, whereas the standing 
wave ratio varies from 1 to ∞, always a real one. 

3. RC varies from point to point over the line whereas the standing wave ratio is specified for 
the entire length of the line. 

4. RC of voltages is negative of RC of currents whereas the standing wave ratio remains same 
whether it is voltage-ratio or current-ratio. 

5. The chief advantage of SWR over the RC is its measurability. RC is difficult to measure 
where as the standing wave ratio is easily measurable quantity. 



INPUT IMPEDANCE 
 The input impedance of a line is the impedance offered by it at the input terminals. As the 
source is connected at the input terminals, this quantity has some special significance while 
selecting the source. During computations, input impedance is quite an useful parameter to find 
the power flowing into the line when a generator is connected to it. To push maximum power 
over to the line, the source impedance and input impedance of line must have a complex 
conjugate relation. 

 Figure 8 Input impedance of a line terminated over an impedance.   
Formally, the input impedance of a line can be defined as the ratio of complex phasor voltage to 
complex phasor current at its input terminals, as shown in Figure 13.16. Mathematically, 

Input voltage
Input current

in
in

in

 
VZ
I

        

It is complex quantity, value being dependent upon the configuration, length and termination of 
the line.  For a line of length l terminated over an impedance, Zl, for a general line and then for 
a loss-less line, it is given by  

tanh tan&
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 To derive these relations, consider a line of length l terminated over an impedance of Zl, 
The input impedance of this line by definition is 

s
in d l

s d l
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V VZ Z
I I

  

By substitution of the expressions for voltage and currents, from Eqs.(13.53), into the above 
relation, one can obtain that  
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 However, r r lV I Z , as the line is terminated over Zl. Thus,   
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In case of loss-less lines, γ =jβ and tanh γl = jtanβl. In transmission line theory, the impedance 
of a line or load, divided by CI of line is called normalized impedance and process is named as 
normalization. Normalized impedances are indicated by small case letters. Input impedance can 
also be expressed in terms of normalized quantities:  

 tanh tan&
1 tanh 1 tan

in l in l
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l j l
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Similarly, expressions for input admittance, both for general as well lossy lines can be derived. 
It is also possible to express normalized input impedance and admittances in terms of  
normalized load impedance and admittances.  
 It can be very easily shown that input impedance is Zo tanh γl in case of shorted line and  Zo 
coth γl in case of opened out line. 

0
0

tanh tanh
tanhl

l

l o
in sc o o

o l

l l
l




 

Z
Z

Z Z γZ = Z Z Z γ
Z Z γ

   
 

With open circuit termination, its input impedance becomes,  
tanh coth
tanhl

l

l o
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o l

l l
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In case of loss-less line, γ =jβ  resulting in  Zsc = Zo j tanh βl and Zoc = ‒Zo j coth βl .  

  Figure 13.17 Input immitance of  a transmission line.    
 
T and π  equivalent circuits: 
Consider a T circuit with series elements equal to Z1 and shunt element equal to Z2.. If this 
circuit is equivalent to a line of length, l then both must give same input impedance on short 
circuit as well on open circuit. Equating their input impedances on open circuit gives, 

1 2 2 1coth cotho ol l    Z Z Z Z Z Z    
Equating their input impedances on short circuit gives, 
 

1 1 2 1 1 2 1 2 1 2tanh ( ) ( ) tanho ol l      Z Z Z Z Z Z Z Z Z Z Z Z    
Combining these two relations gives, 

2
1 1 1coth ( coth ) coth tanho o o o ol l l l   Z Z Z Z Z Z Z Z     



1 22 2 2 21
1 1 1 22 coth 0 2 coth (2 coth ) 4o o o o ol l l        Z Z Z Z Z Z Z Z  

1 22 2
1 1coth ( coth ) (coth csch )o o o ol l l l       Z Z Z Z Z Z     

Solving this equation for Z1 results,  
1 tanh( 2)o lZ Z   

Now Z2 can be found from  
2 1coth coth tanh( 2) sinho o o ol l l l    Z Z Z Z Z Z     

 
Consider a π circuit with shunt elements equal to ZB and series element equal to ZA.. If this 
circuit is equivalent to a line of length, l then both must give same input impedance on short 
circuit as well on open circuit. Equating their input impedances on open circuit gives, 

( ) cothA A B o l Z Z Z Z    
Equating their input impedances on short circuit gives, 

tanhA B o lZ Z Z   
 
LINE SECTIONS  

Small sections of lines find useful in the design of circuits for specific purposes like load 
measurement, impedance transformation, load matching etc., where they are not used for power 
or signal transmission. Eighth wave line, quarter wave line and half wave line belong to this 
category. A brief description and the theoretical background of these lines are given below.     
13.10.1. Eighth-wave lines 
The salient features of eighth wave transmission lines are: 
 These are uniform and loss-less lines with real CI  i.e. Zo = Ro  with length equal to λ/8. 
 The magnitude of input impedance is equal to their CI, |Zin|=Ro when    
    termination is over a pure resistance, i.e. Zl = Rl   
Proof:   The input impedance, from Eq.(13.61), of a loss-less line of length λ/8 is  
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If the line is terminated in a pure resistance Zl = Rl, then,  

8
l o

in ol
o l

R jRR
R jR





Z         

The numerator and denominator have identical magnitudes, and hence, |Zin|l=λ/8=Ro, a 
pure real quantity. Consequently, the magnitude of the input impedance becomes equal to the CI 
of line, Zo (= Ro pure real as line is loss-less) when termination is over a pure resistance. 

To conclude, an eighth-wave line can be used to transform any resistance into an 
impedance, hose magnitude is equal to CI i.e. |Zin| = Ro of the line. Hence, it can be used to 
obtain a magnitude match between a load resistance of arbitrary value and a source of internal 
resistance equal to Ro . 



Figure 9  Input impedance of(a) eighth wave line and (b) quarter wave line.   
Quarter-wave lines 
The salient features of quarter wave transmission lines are: 
 These are uniform loss-less lines with lengths given by λ/4+nλ/2, n = 0,1,2…… 
 The input impedance of these lines is inversely proportional to the terminating impedance 
Proof:  The input impedance, of a loss-less line of length λ/4  is  
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As ,  
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The above relation can be put in an interesting form.   
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Thus, the normalized input impedance is equal to normalized load admittance for quarter wave 
section.  
 From Eq. (13.81), it can be observed that the quarter wave section acts as an impedance 
transformer or impedance inverter. The input impedance is large when the terminal impedance 
is small and vice versa.  
 Provided the CI is resistive, a large pure resistance termination gets transformed into a 
small pure resistance and vice versa. Its input impedance is pure inductive if the termination is 
pure capacitive and vice versa.  If the output impedance consists of a resistance in series with an 
inductive reactance, the input impedance becomes a resistance in parallel with a capacitive 
reactance and vice versa. 
 An ideal quarter-wavelength line, l=(2n‒1)λ/4, n=1,2,3.., is supposed to exhibit an input 
impedance of infinite on short circuit and zero on open circuit. However, infinite and zero 
impedances are not achievable in practice and what that appears is an input impedance of large 
value on short circuit and a small value on open circuit. Now, those impedances are estimated. 
(1)Short circuited quarter-wavelength line, the input impedance is, 

sc oZ R l   
This is resistive, impedance maximum and highest value is possible when l is least achievable 
i.e. l=λ/4. The behavior  of this line section can be found to similar to that of an antiresonant 
circuit near resonance.  
(2)Open circuited quarter-wavelength line, l=(2n‒1)λ/4 input impedance is 

oc oZ R l   
This is resistive, impedance minimum and lowest value is possible when l is least feasible i.e. 
l=λ/4. The behavior  of this line section can be found to similar to that of a series resonant 
circuit when frequency is varied near resonance.  

Proof:  Consider relation for input impedance for a shorted line of length l and expand it with 
γ=α+jβ : 

 sinh( ) sinh cos cosh sintanh
cosh( ) cosh cos sinh sinsc o o o
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For line of lengths equal to an odd multiple of a quarter wavelength, sin βl=±1and cos βl=0. As 
the attenuation is small when working at high frequencies, αl is also small, and in general, 
coshαl≈1, sinhαl≈ αl making the input impedance, 

cosh
sinh

o
sc o

RlZ
l l


 

 Z      

When the line is on open circuit, Zoc =Zo coth γl and manipulation on similar lines leads to ().  
 
 It can also be used to step up the voltage. As long as it is loss-less, the ratio between output 
and input voltages is just square root of  ratio of output to input impedances that are being 
matched. 
Derivation:  
Consider the voltage equation, for loss-less line,. For a quarter wave line, d=λ/4, and the input 
voltage Vs  becomes,   
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j j
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and hence, the ratio of input to load voltages becomes, 
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The voltage step up i.e. the ratio of output voltage to input voltage, then, becomes  

l l

s s


V Z
V Z

         

In the case of open circuited quarter wave line, the step up is infinite but it is for an ideal case of 
absolute loss-less line. To find the exact step up for practical case of a low-loss line, it requires 
considering the equation which takes the losses and the consequent attenuation into account. 
Consider the voltage equation. As the line is open circuited, Il =0= Ir, second term becomes 
zero. As the line is quarter wave in length, l=λ/4 and γl=(αl+jβl)=(αl+jβλ/4)= (αl+jπ/2). 
Incorporating these aspects into the voltage equation results in    
   cosh sinhs r l ll j l j l    V V V γ V V  
For a low- loss line, attenuation constant is given by, α=R/2Zo and for a one quarter wave line 
i.e. l=λ/4. Hence, voltage step-up is,   

21l o

s l Rl
 

V Z
V

       

Incidentally, for a three quarter-wave section, l=3λ/4, three times that of a single quarter wave 
section, and hence, the voltage step-up is one third of that for single quarter wave section.  
 The frequency sensitivity is the main drawback of this line section. 

 



Figure 10  Quarter-wave line in action. As (a) insulator and and for (b) driving 
(load matching)an antenna.    

 
 Applications:  

 It acts as impedance transformer or inverter as it can step-op or step-down the 
impedance.  
 It can be used as voltage step up transformer. 
 It is used for load matching purposes. 
 Another application of the sc quarter-wave line is as an insulator to support an open-
wire line or the center conductor of a coaxial line. This application makes use of the 
fact that the input impedance of quarter-wave shorted line is very high. 

13.10.3. Half-wave lines 
The salient features of half wave transmission lines are: 
 These are loss-less and uniform lines, with length given by, nλ/2, n=1,2……  
 The input impedance of these lines is equal to the terminating impedance, as illustrated in  
Figure 13.21. This property is independent of CI, Zo but frequency dependant. 

Figure 10  Input impedance of half-wave line.   
 
Proof:  The input impedance, from Eq.(13.61), of a loss-less line of length, λ/2  is 
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It proovess input impedance of λ/2   lines is equal to their terminating impedance. 
 An ideal half-wavelength line, l=nλ/2, n=1,2,3..,  is supposed to exhibit an input impedance of 
zero on short circuit and infinite on open circuit. However, zero and infinite impedances are not 
achievable in practice and what that appears is an input impedance of small value on short 
circuit and a large value on open circuit. Now, those impedances are estimated. 
(1)Short circuited half-wavelength line, input impedance is 

sc oZ R l   
This is resistive, impedance minimum and lowest value is possible when l is least feasible i.e. 
l=λ/2. The behavior  of this line section can be found to similar to that of a series resonant 
circuit near resonance.  
(2)Open circuited half-wavelength line, l=nλ/2 input impedance is 

oc oZ R l   
This is resistive, impedance maximum and highest value is possible when l is least achievable 
i.e. l=λ/2. The behavior  of this line section can be found to similar to that of a parallel resonant 
circuit when frequency is varied near resonance.  



Proof:  Consider relation for input impedance for a shorted line of length l and expand it with 
γ=α+jβ , resulting in Eq. (13.86). For line of lengths equal to an even multiple of a half-
wavelength, sin βl=0and cos βl=±1. As attenuation is small when working at high frequencies, 
αl is also small, and in general, coshαl≈1, sinhαl≈ αl making the input impedance, 

sinh
coshsc o o
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
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It can be noticed that short circuited λ/4 line gives higher input impedance compared to open 
circuited λ/2 line and open circuited λ/4 line gives lower input impedance compared to short 
circuited λ/2 line. It implies that the line which is shortest gives better impedance properties and 
hence is desirable. The factor n appearing in various expressions also influences impedance, by 
lowering maxima and raising minima, as n increases. 
 
Applications: 
 It has its greatest utility in connecting a load to a source in situations where the load and 
source cannot be placed adjacent to each other. 
 The short circuited λ/2 line can act as a band-stop filter, it can be used to measure velocity 
factor and dielectric constant of medium. 
 Half wave line is also used to measure the impedance that is not accessible physically. 

 SPECIAL TYPE LOSS-LESS LINES 
Loss-less transmission lines with short circuit or open circuit terminations are very often 
encountered, in applications like load measurement and load matching. Through proper choice of 
the length of a short or open circuited line, it is possible to obtain substitutes for capacitors and 
inductors with any desired reactance. Such a practice, indeed, is common in the design of 
microwave circuits and high-speed integrated circuits because making an actual capacitor or 
inductor is often more difficult than making a shorted or opened out transmission line.  
 It is also possible to simulate resonant circuits, with shorted or opened out transmission line. 
These properties are utilized in the design of band pass and band stop filters at microwave 
frequencies. It should be noted that unlike an ideal LC circuit, the shorted line has an infinite 
number of resonances.  
Here, these special types of lines are considered and examined. Let us consider a uniform loss-
less line of length 'l' lying along x-axis, with input point at x=0  and load point at x=l. First the 
line is short circuited and then it is open circuited. 
 Short circuited line 
 Note that as the line is shorted, load impedance is zero, Zl =0. The voltage, current waveforms 
and input impedance of these lines are shown in Figure 14.15. 
 RC:  The voltage RC over the load is 
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As the line is loss less, the magnitude of the RC remains same at all points over the line. 

  1 1l    Γ  
However, the phase of the RC changes from point to point. 
 SWR:  As the line is loss-less, it can have the standing wave ratio, SWR. For this line, it can be 
computed from the available value of Γ, as shown below.   
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Figure 14.15. (a)Voltage and  current waveforms and(b) input impedance of a line when shorted. 
 Voltage pattern: The total voltage on the line is sum of voltages of incident and reflected 
waves, which can be expressed as  
  

j x j xe e    V V V         
As line is loss-less and reflection is complete or perfect but with phase reversal(because of SC),  
V+= ‒ V-.  The load is located at x=l, and hence, the voltage pattern over a short circuited line 
becomes,  

    2 sin ( )sc x j x l  V V          
 Current pattern: The total current on the line can be expressed as 

  
 j x j x

o e e    I Y V V        
 With V+= ‒ V- , the current  pattern of shorted line  becomes 

  
  2 cos ( )sc ox x l I Y V        

From the voltage pattern one can observe that the voltage is zero at the load i.e. at x=l  as it 
should be for a short circuit, and its amplitude varies as  sin βl. And from the current pattern, it 
can be observed that the current is maximum at the load and it varies as cos βl. 
 In case of short circuit termination, it is a current anti-node and a voltage node that 
exists right over the load. In this case, as the total voltage is required to be zero over the load, 
the voltage must get reflected with 1800 phase shift whereas the current need not under go any 
phase shift. It results in voltage node and current anti-node over the short circuit termination. 
The voltage and current waveforms on a short circuited loss-less line are shown in Figure 
14.15(a).  

 
 Input impedance:  The input impedance of this loss-less shorted line can be computed as  

   
0 tan

l
in oZ j l


Z Z .     (14.62) 

From the above expression, input impedance of an open circuited line is purely reactive, and it 
can be positive, negative, zero and even tends to infinity, as  is shown in Figure 14.15(b). Hence, 
it can behave like an inductor, capacitor and also as a resonant circuit.  



Open circuited line 
Note that as the line is open, load impedance tends to infinity, Zl →∞. The voltage, current 
waveforms and impedance of these lines are shown in Figure 14.16. 
 
 RC:  The voltage RC over the load is 
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As the line is loss less, the magnitude of the RC remains same at all points over the line. 

  1l  Γ   
However, the phase of the RC changes from point to point. 
 
 SWR: As the line is loss-less, it can have the standing wave ratio, SWR. For this line, it can be 
computed from the available value of Γ, as shown below.   
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 Voltage pattern: The total voltage on the line is sum of incident and reflected waves, which can 
be expressed as, 
   j x j xe e    V V V         
As line is loss-less and reflection is complete or perfect(because of OC),  V+= V-.  The load is 
located at x=l, and hence, the voltage pattern over the open circuited line becomes,  
     2 cos ( )oc x x l V V         

Figure 14.16. (a)Voltage and  current waveforms and(b) input impedance of a line when open. 
 Current pattern: The current on the line is 
    j x j x

o e e    I Y V V       
With V+= V-, the current pattern over the line becomes,   



  
  2 sin ( )oc ox j x l I Y V        

Note that from the current pattern, the current is zero at the load i.e. at  x = l as it should be for a 
open circuit, and its amplitude varies as sin βl. Similarly, from voltage pattern, it can be observed 
that the voltage is maximum over the load and it varies as cos βl. 
When the termination is open circuit, the current gets reflected with 1800 phase shift, since the 

total current has to be zero on an open circuit and the reflected current has to cancel the incident 
current which can happen only they are out of phase. However, the voltage gets reflected without 
any phase shift, as the direction of travel of the wave and phase of current being reversed, 
reflected voltage cannot have a phase shift. Thus, it is a current node and consequently, a voltage 
anti-node that exists right over the open circuit load.  
Input impedance:  The input impedance for a loss-less line is given by 

  
cot

l
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 ZZ Z .      

From the above expression, input impedance of an open circuited line is purely reactive, and it 
can be positive, negative, zero and even tends to infinity, as  is shown in Figure 14.16(b). Hence, 
it can behave like an inductor, capacitor and also as a resonant circuit.  

Some of of the applications of opened out lines in Antennas are, 
 Opened out parallel wire λ/4 transmission line is used as wire radiator, called 'half wave 

dipole'. 
 Opened out parallel wire transmission line of length less than λ/4 is used as wire parasitic 

radiator called 'director' in Yagi-Uda array. Thus, the director carries capacitive currents. In 
other words, an opened out line excited at a frequency less than resonant is capacitive. 
 Opened out parallel wire transmission line of length more than λ/4 is used as wire parasitic 

radiator called 'reflector' in Yagi-Uda array. Hence, the reflectors carry inductive currents.  In 
other words, an opened out line excited at a frequency more than resonant is inductive. 

  



 

 

UNIT-II 

TRANSMISSION LINES-II 
Assignment-Cum-Tutorial Questions 

SECTION-A 

1. The distortion-less line condition is      [ ]     

a)    b)   

c)    d) None of these    

2. The loading of line refers to the connection of    [ ]    

a) Inductive coils  b) Capacitive boxes 

b) Both (a) and (b)     d) None of these   

3. The reflection coefficient right over the source is    [ ]   

a) 

( )

( )
s o

s o

−Z Z

Z + Z
    (b) 

( )

( )
s o

s o

+Z Z

Z - Z
 

(c) 
( )

( )
o s

o s

−Z Z

Z + Z
       (d) None of these  

4. The load voltage VL of a lossless OC transmission line in terms of  V+ is   [           ] 

a)VL = V+ b)VL = (½)V+ c) VL =2 V+ d) VL = (V+)2 

5. Z0 in terms of Short circuit impedance ZSc and open circuit impedance ZOc  [          ] 

a) Z0 = ZSC * ZOC b) Z0 = √ZSC ∗  ZOC   c) Z0 = (ZSC * ZOC)2   d) Z0 = ½(ZSC * ZOC) 

6. ------- Wave line acts as impedance transformer or inverter. 

7. An open circuited line with length < λ/4   is equivalent to----------------. 

8. An open circuited λ/4 line is equivalent to ---------------------------circuit. 

9. An open circuited line with length > λ/4   is equivalent to an--------------. 

10. The dependence of attenuation on frequency causes------------------------.  

11. Distortion-less condition is -----------------------------------------------------. 

12. Load matching refers to termination of line with ----------------------------. 

13. The input impedance of a transmission line is a function of its length. (yes/no) 

14. Write the ranges of reflection coefficient and standing wave ratio. 

15. Eighth-wave line transforms any resistance to impedance with a magnitude equal to ------

-----------------------------of the line. 

 

SECTION-B 

Descriptive questions 

1. Explain about the λ/2, λ/4, λ/8 transmission lines. [C02] 

2. Derive an expression for the input impedance of a loss-less line which it is terminated by 

(a) a load Zl (b) open (c) short circuit and draw the suitable sketches. [C02] 

3. Draw the line impedance curves of a lossless SC and OC transmission lines and analyze 

its inductive and capacitive properties. [C02] 

R L G C= R L G C

R L G C



4. Explain about the lossless lines and distortion less line. [C01] 

5. What is loading? Discuss different types of loading methods mentioning their relative 

merits and demerits. [C02] 

6. Describe the T and 𝜋 sections of transmission line. [C01] 

7. Differentiate SWR(S) from Reflection coefficient (K). [C02] 

8. What is distortion-less condition? Derive the relation for distortion-less line condition on 

the primary constants. [C02] 

9. What are properties and applications of eighth wave line, quarter wave line and half wave 

line? Given a list of their applications. [C02] 

Problems 

1. Determine the primary constants, R, L, G, and C for a distortion-less line working at 

300MHz. Given that the line has characteristic impedance, Zo =75Ω, attenuation constant, 

α=0.12Np/m, and wave velocity, v=1.4×108m/s. [C02] 

    

2. A loss-less 75Ω line, 5λ/8 in length, is terminated on a load   Zl. Find out its input 

impedance Zin when  (a) Zl= j45Ω     (b)  Zl= 25–j65Ω. [C02] 

 

3. Determine the input impedance  of a short circuited 50Ω  coaxial line  with β = 8.5rad/m 

when line length is (a)15cm(b)1.5m(c)3λ/4 and (d)λ/8. [C02]     

4. A transmission line used to connect a transmitter to its antenna has a characteristic 

impedance Z0 = 50 Ω. The antenna with impedance ZL= (100+j75) Ω is connected as a 

load. Calculate load reflection coefficient. [C01] 

5. A distortion less transmission line is characterized by R = 1.6Ω/𝑚, L = 0.8μH/m, and           

C= 10 nF/m. Calculate shunt admittance G. [C01] 

6. ZOC= 900<-300,ZSC=400<-10o. Calculate the Z0 and propagation constant of a 12 Km 

long line. [C02] 

7. A distortion less line has Z0=60 Ω, α=20 m Np/m, u=0.6c where c is the speed of the light 

in vacuum. Find R, L, G and C at 100MHz. [C01] 

8. A lossless transmission line used in a TV receiver has a capacitance of 50 pF/m and an 

inductance of 200 nH/m. Find the characteristic impedance for sections of a line 10 meter 

long and 500 meter long. [C02] 

SECTION-C 

1. A transmission line with a characteristic impedance of 100Ω is used to match a 50 

Ω section to a 200 Ω section. If the matching is to be done both at 429MHz and 1GHz, 

the length of the transmission line can be approximately(GATE2012) [ ] 

(A) 82.5cm     (B) 1.05m    (C) 1.58m    (D) 1.75m         

2. A transmission line of characteristic impedance 50Ω is terminated in a load impedance 

Zl. The VSWR of the line is measured as 5 and the first of the voltage maxima in the 

line is observed at a distance of λ/ 4from the load. The value of Zl  is (GATE2011)[  ] 

(A) 10  (B) 250  (C) (19.23 + j46.15)  (D) (19.23 – j46.15)      



Transmission lines and Waveguides(UNIT III) 
 

A. Questions testing the remembrance/understanding level of students 
I. Objective/Multiple choice questions 

1. In single stub matching, length of stub is --------- and location of stub is --------- 
2. Equation representing circles is ----- and that representing arcs of the chart is ----- 
3. Double stub matching is not possible when the load falls in-------  region 
4. Over the Smith chart, full circles represent----- and arcs  represent-----. 
5. Over the Smith chart, the upper half is----- and lower half is-----. 
6. Smith chart uses only----- and describe the line for -----.  
7. The centre of constant SWR circle is always the----- of the chart. 
8. Vmax, Imin and ρ correspond to----- half the chart and Imax, Vmin and 1/ρ correspond to----- half 
the chart 

 
II. Descriptive questions 

1. What is Smith chart. 
2. Differentiate loss-less line from low-loss line.  
3. Why CI is real and PC is imaginary at high frequencies. 
4. Locate voltage max and min for pure resistive termination. 

 
B. Questions testing the ability of students in applying the concepts 
I. Multiple choice questions 

1. The Smith chart can be characterized as               
a) A Polar plot  b) represents complex RC 
  c) Inscribed in a unity circle  d) all 
2. The complete circles and arcs in the Smith chart, respectively, represent   
         
a) Normalized resistance/conductance,  Normalized reactance/ susceptance 
b)Normalized reactance/ susceptance,  Normalized resistance/conductance 
  c) Normalized reactance, susceptance d) none of these   
3. The circles and arcs over the Smith chart are             
a)  Orthogonal   b) Opposite to each other   
c) At 450   d) None of these   
4. The upper half and lower half of the Smith chart, respectively, represent    
         
a)  Positive, nagative reactance/susceptances  
b) Capacitive, inductive reactance/susceptances   
c) Resistance, conductance     d) None of these   
5. The radius of the constant SWR circle  is equal to             
 
a) Voltage SWR b) Current SWR  
c)  Both (a) and (b)        d) None of these   
6. The centre of the constant SWR circle  falls over              
 
a) ‘1’of horizontal line b) centre of the chart  
c) Both (a) and (b)     d) None of these   



7. In the left-half and right-half of the chart, resistance and reactance values, respectively, are   
        a) More than 1, less than 1  b) Less than 1, more than 1 
 c) 1,1      d) 0,0   
  
8. The left most and rigtht most points of the chart, respectively, represent     
 a) (0,0), (∞,∞)   b) (∞,∞),(0,0),    
 c) (0,0), (1,1)      d) (1,1),(∞,∞)  
 
9. The top most and bottom most points of the chart, respectively, represent    
a)  (1,1), (‒1,‒1)      b) (‒1,‒1), (1,1)      
 c) (1,1), (0,0)      d) None of these   
10. Smith chart is always used with                
a) Normalized impedances   b) Normalized admittances 
c) Both (a) and (b)    d) None of these   
11. The Smith chart is useful to analyze             
a) Loss-less lines    b) lossy-lines 
c) Both (a) and (b)    d) None of these   
12. The horizontal line left and rigth of the centre, respectively, represent       
     
a) Vmax, Imax; Vmin, Imin     b) Vmin, Imax; Vmax, Imin  c) Vmin, Imin; Vmax, Imax    d) None of these   
13. The movement towards load  and towards source over the line, respectively, correspond to, 
   
a) Clock-wise, anticlock-wise rotation over the Smith chart  
 b) Anti-clockwise, clock-wise rotation over the Smith chart   
c) Upwards, downwards     d) None of these   
  
14. The points over SWR circle, diametrically opposite to load impedance and load admittance 
points, respectively, are         
 a) Load admittance, load impedance   b) Load impedance, load admittance  
 c) CI, CI     d) None of these   
15. Travel of length  λg/2  over the line corresponds a rotation of   
a)  over the chart   b)  over the chart 
c)  over the chart   c) None of these   

 
II. Problems 

1. A loss-less Zo=100Ω line, terminated over an unknown impedance carries a wave with 
SWR=4. The first Vmin is found at a distance of λ/8 from load. (a) Determine load 
impedance, Zl. When a matching QWT with CI, Zo1 is inserted,  find out the (b) minimum 
distance between load and quarter wave line and (c)value of  Zo1 in terms of Zo. Rework 
the problem when it is Vmax at λ/8  instead of Vmin. 
Answers: First case: (a)(47.05‒ j 88.23)Ω, (b)0.125λ, (c) Zo/2Ω   Second case: (a)(47.05+ j 
88.23)Ω, (b)0.125λ, (c)2ZoΩ    
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2. A loss-less air dielectric 120Ω line, working at 300MHz is terminated on a 36Ω resistive 
load.  Find the length of a single shorted parallel connected stub and the location nearest to 
load for matching the line. 
Answers:  39.4cm,     8cm,   

 
3. A voltage source, Vg =120V with internal impedance, Zg =50Ω is energizing a 50Ω line, 

0.64λ in length and terminated on a load with impedance, Zl =75Ω. Compute the time-
averaged power delivered to line by source.   
Answers: 34.56W 

 
4. A loss-less 140Ω air dielectric line i.e. εr=1 is matched to a load of 280Ω at 200MHz by 

means of a parallel shorted stub,  Find the (a) length of stub and its position nearest to load. 
If the frequency is changed to 220MHz, without altering the circuit in anyway,  find the 
(b)VSWR on the main line. Re-work the problem when the line has an insulation dielectric 
constant of 2.25.  
Answers: For εr =1(a) 22.80cm,22.65cm (b)1.22,for εr =2.25(a)15.20cm,15.20cm(b)1.23 

 
5. A loss-less 75Ω line is terminated on a load with impedance, (100+j150)Ω. Using Smith 

chart, determine the distance from load where the line impedance is (22.50+j47.25)Ω.      
Answers: 0.4λ.  

 
6. A loss-less 50Ω line is connected to an unknown impedance giving a maximum voltage of  

Vmax =0.90V and a minimum voltage of Vmin =0.45V  over the line. When the load is 
replaced by a short, the shift in minima is found as 0.15λ towards source. Using Smith 
chart, find the load impedance.  
Answers:   Zl=(50+ j32.5)Ω 

 
C. Questions testing the Analyzing/evaluating/creative abilities of student 

1. Explain the need and method of loading technique. Discuss different types of loading methods 
mentioning their relative merits and demerits.  
2. Define matched line. What are the advantages of transmission over matched line? Explain 
why a matched line does not carry reflected wave. 
3. Describe the procedure of load matching with quarter wave transformer for different types of 
loads. What are the advantages and short comings involved in this method? 
4. Describe the method of single stub matching.  Derive the relation for the length and location 
of the stub. 
5. Describe Smith chart and its  salient features. 
 D. Previous GATE/IES questions 
1. For pure reactance and pure resistance loads, load points over the Smith chart, respectively,  
stay at,  
a) At the periphery, over the horizontal line b) Over the horizontal line, At the periphery  
c) In the lower half, At the periphery  d) In the upper half, over the horizontal line 
2. For a match terminated loss-less line,  the  location of load point over the Smith chart is   
a) At centre   b) At periphery   
c) In the upper half d) In the lower half 

 



 
 LOAD MATCHING 

A line is said to be matched to the load when the load accepts all the power that has been 
placed over the line by generator without any reflections back. Under matched conditions, 
therefore, the line carrys only the forward traveling wave, with no reflected wave.  It is shown 
soon that it can happen only when the load impedance is equal to the characteristic impedance of 
the line. Mathematically, matched termination implys, 

l oZ Z       (15.6) 
 Proof:  Consider an infinite line, with its load, naturally located at infinity. When a wave 
is impressed at its the source end, it starts traveling towards the load. However, as the load, the 
generation point of the reflected wave is at infinity, the wave can never reach it, and hence, there 
can never be a reflected wave over an infinite line.  

Next, consider a finite length line terminated over its characteristic impedance. As the 
input impedance of the infinite line is equal to its characteristic impedance, the finite line under 
consideration can be viewed as a line terminated over an infinite line, making the combination 
another infinite line. As infinite line cannot have reflected waves, the finite length line 
terminated over its characteristic impedance also cannot have reflected waves, and hence, is a 
matched line. 

When the line is designed for transfer of power to the load, then matched termination 
brings several advantages like maximum power transfer, maximum efficiency, lesser peak 
voltages, lower flashover likelihood, elimination of modulation distortion etc. Regarding power 
flow over a loss-less line, the following points, in the light of load matching, should be noticed:  

 For reflection-less transfer of power into load from line, load impedance must be equal to 
characteristic impedance of line 

 When loss-less line is terminated over short or open or pure reactance, power into the line 
system from generator as well into load from line is nil.  

 For maximum power transfer from source into line, the source impedance must be 
conjugate of input impedance of line. 

 The entire output of source can be placed over the line only when its internal impedance 
is equal to characteristic impedance.  

 The reflected wave from the load gets nullified by the source when its internal impedance 
is equal to characteristic impedance.  

 When the line is loss-less, the power delivered to load is equal to power placed over the 
line by source. In case of lossy line, power to load is less than the power placed over the 
line by source 

When the line is terminated over impedance which is different from its characteristic impedance, 
reflections occur resulting in an inefficient transmission system and also all the benefits 
mentioned above are absent. Hence, mismatched operation of the line is unwanted and to 
eliminate or reduce the reflected wave over the line certain measures, called load matching 
techniques, are developed. They are, 

1. Quarter-wave transformer technique 
2. Single-stub matching technique, and  
3. Double-stub matching technique. 

In all these techniques, the reflected wave is eliminated from line only on the source side of 
matching device. Remaing part of line carrys reflected wave, and hence, standing wave.Another 
aspect of importance is, the distance between matching device and load is always less than one 



half-wavelength. However, incase of inaccesability or presence of any physical obstruction, the 
point of insertion may be shifted to an interger number of half wavelengths towards source side.  
Now, a detailed description of these techniques is given below. 
------------------------------------------------------------------------------------------ 
Example 15.3: A 100Ω line of 1km long is terminated over a 200Ω load. It is fed by a 
generator of voltage, 10V and internal impedance, 50Ω. Find the load voltage and load power 
when the wave velocity, v=2×108m/s and frequency, f= 2×105rad/s. 
Solution:  Given that, l = 1000m, Zr = Zl =200Ω, and Zo =100Ω. The phase shift constant can 
be computed as β=ω/v=2×105/2×108 = 10-3 rad/m, giving βl=1, tanβl= tan1= 1.557. By 
substituting the available values in the expression, the input impedance can be obtained as,  

200 155.7100 77.47 0.598
100 311.481in

j
j


   


Z  

This impedance is in series with the source resistance and the two together are across the 
voltage source. The current through this impedance gives sending end current and voltage 
across it gives sending end voltage of the line. They can be calculated as,  

10 0 0.0819 0.365A
50 0 77.47 0.598

g
s

g in


   

   
V

I
Z Z

 
77.47 0.598 0.0819 0.365 6.345 0.233s in s        V Z I V 

With the availability the sending end current and voltages, the receiving end current and 
voltages can be computed. In computing these quantities, the relation γx = jβx= j×10-3×103 =j , 
and also ej=1∠1,  e-j=1∠–1  can be used.  

   1
2 0.0819 0.365 77.47 0.598 100 0 1 1 77.47 0.598 100 0 1 1l             V  

   0.041 0.365 169.73 1.26 56.54 1.26         
9.27 0.895  V 

This is the value of the voltage across the load. The average power consumed in the load, then, 
becomes  

2 21 1
2 2/ 9.27 / 200 0.215Wl lp R   V  

Example 15.4: Given (a) Zo = 100Ω, Zl=50Ω and (b) Zo = 50Ω, Zl=100Ω, determine the time 
average power delivered to the load, when a loss-less line of length l =5λ/8  is connected to a 
source voltage, Vg=100V, with an internal impedance, Zg=(30+j40)Ω.  
 Solution:  
For the given values, βl=(2π/λ)×(5λ/8)=1.25π rad and tan βl = tan 1.25π = 1. The input 
impedance can be obtained as,  

 50 100100 80 60
100 50in

j j
j


   


Z  

The current into the line is  

 100 0 0.497 0.452 0.673 0.74A
30 40 80 60

g
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g in

j
j j


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I
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Now, the sending end voltage of the line is found. 
  0.497 0.452 80 60s s in j j   V I Z  

66.88 6.34 67.3 0.09j    V 



As the line is loss-less, power into load is equal to the power into the line, which is product of 
sending end voltage and currents with power factor.  

 1
2 0.673 67.3 cos 0.65 17.99Wavep      

The angle, 0.65 (=0.74–0.09), in radians is the one in between sending end voltage and currents. 
(b) In a similar manner, the input impedance and average power can be found as (40 − j30)Ω 
and 40W when Zo = 50Ω, and Zl=100Ω. 
Example 15.5: Determine load impedance and time average power delivered under maximum 
power transfer conditions when a 100Ω loss-less line of length,  l=0.2λ is driven by voltage 
source, Vg=100V, with an internal impedance, Zg= (25+j50)Ω.  
 Solution:  
 Maximum power transfer into line happens when the source internal impedance is equal 
to complex conjugate of the input impedance of line. When maximum power enters into the 
line, as the line is loss-less, the power that enters into the load also becomes maximum.  Hence, 
for maximum power transfer into line and then into load, 

25 50in g j   Z Z  
From the given values, βl=(2π/λ)×0.2λ=0.4π rad and tan βl = tan 0.4π = 3.08. By substituting 
the available values in the expression for the input impedance, in Eq. (13.61), one can obtain,  

100 3.08 3.0825 50 100 0.25 0.50
100 3.08 1 3.08

l l

l l

j jj j
j j

  
    

  
Z z

Z z
 

    0.25 0.50 1 3.08 3.08l lj j j   z z      

 0.54 0.77 ( 0.25 3.58)l j j   z  

 
   0.25 3.58

100 296.40 240.33
0.54 0.77l

j
j

j
 

   


Z  

Next, the power onto the line, which is equal to the power into the load from line can be 
computed. The current into the line is,  

100 0 2 0
25 50 25 50

g
s

g in j j

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V

I
Z Z

A 

The sending end voltage of the line is, 
 2 25 50 111.8 1.11s s in j    V I Z  

  1
2 2 111.8 cos 1.11 49.71avep      W. 

Note that the angle, 1.11 in radians, is the angle between the voltage and current. 
Example 15.6: A loss-less Zo = 300 Ω line is connecting a 100V generator to a pair of 
antennas, each with an input impedance, Zant = 73Ω, through two branch lines, with Zo = 300 Ω. 
The lengths of main and branch lines are same and equal to 3λ/8. Find the average power 
delivered to each one of the antennas.  
Solution:  
From the given data, βl=2π×3λ/8λ=3π/4 rad and tan 3π/4 = –1. The input impedance of each 
branch line is computed using the relation given in Eq. (13.61).    



 tan 73 150150 118 92.55
tan 150 73
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Figure 15.2 Generator feeding two antennas through two branch lines.  
The load for main line is parallel combination of input impedances of branch lines, as shown in 
Figure 15.2, and it is given by,    

    ZL = ½Z'in = 59–j46.3Ω 
The input impedance of the main line then is 

 
 

59 46.3 300
300 (156.53 373.10)

300 59 46.3in

j j
j

j j
 

   
 

Z  

The input current to the main line is  

 
100 0.169 0.685A

300 156.53 373.10in j
  

 
I  

The power into the main line gets divided equally between the branch lines, ultimately, to go 
into the antennas. Thus, the power delivered to each one of the antennas is half of the total 
power into the main line, which is given by   

   221 1
2 2 0.169 156.53 2.235 Wav in inP I R    

Power to each antenna, therefore, is 2.235/2=1.12W 
----------------------------------------------------------------------------------------- 
15.2.1. Quarter wave transformer 

Load matching can be enforced with a λ/4 length loss-less line, called quarter wave 
transformer (QWT). The reflection-less property of this device for continous waves is achieved 
by adjusting reflections at two ends to balance out at the designated frequency. As given in 
Eq.(13.66a), the input impedance of a quarter wave line is inversely proportional to the 
termination impedance and directly proportional to the square of  the characteristic impedance of 
the transformer. Mathematically, 
  inZ Z lZ       (15.7) 

where Zo,trans is the characteristic impedance of the transformer line and Zl is its termination 
impedance.  

4in trans ll
Z Z Z


 2

0,in trans lZ Z Z



 Figure 15.3 Load matching with Quarter-wave transformer.(a) Real resistive load and (b) 
complex impedance load.(a=13.1) 

To match a loss-less line of characteristic impedance, Zo to a load of Zl ≠ Zo, a QWT is inserted 
between line and the load, as shown in Figure 15.3. The transformer is able to give the required 
matching, provided its characteristic impedance, Zo,trans is related to Zo and Zl through   

 ,o trans o lZ Z Z        (15.8) 
Table 15.2 Details of QWT matching technique for complex loads. 

 Proof: To avoid reflections, the termination impedance must be equal to the characteristic 
impedance of the line. The termination impedance of the line becomes the input impedance of 
QWT when the line is terminated over the transformer. The input impedance of the transformer 
terminated over Zl can be varied and made equal to Zo by appropriately selecting its 
characteristic impedance, Zo,trans . Then, that is under matching, it can be written that,  
 2

,4in o trans l ol 
Z = Z Z = Z  

It gives that  
2

, ,o trans o l o trans o lZ = Z Z Z = Z Z  
It is same as Eq.(15.8). The procedure so far described works well only if the terminating 

impedance is purely resistive. Otherwise, Zo,trans , according to Eq.(15.8), becomes complex, 
which cannot be realized with a loss-less transformer line, whose characteristic impedance can 
assume only pure real values.  

In case of complex load, this technique still can be used but with some minor 
modifications, which are mentioned below.   

 First, convert the load impedance to admittance and then find the susceptance part of it. 
 Tune out this susceptance part of load admittance by connecting a shorted stub across the 
load. Now, the effective load is pure real. 
 Find the characteristic impedance of the transformer to be used, from the values of  
effective load impedance and the characteristic impedance of the line. 
 Connect the quarter wave transformer in between the load and line. 

S.No Attribute Load type Minima Maxima 
1.  

Location of QWT 
from load, qd  

Capacitive load: 
θl is negative 4

l


   
4 l


 


   

2.  Inductive load: 
θl is positive  

4 l
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 
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  
4

l


 

3.  Characteristic impedance of QWT, 
,o qZ  
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  Figure 15.4 QWT insertion for load matching.(a) Capacitive load and (b) inductive load. 
Another method, useful to match complex loads, involves insertion of a QWT at the location of a 
voltage maximum or a minimum point. It is already seen that the line impedance is pure real at 
these points, whose locations are available in Eqs. (14.35) and (14.36). It can be observed that at 
distance of λθl /4π, from the load, either a minimum or maximum occurs, depending upon the 
load type, as shown in Figure 15.4. It is preferred to insert the QWT at this point, because in such 
case, the least length of line remains under reflected wave.  

The line impedance at minima is Zo(1−Γl)/(1+Γl)= Zo/ρ and  the characteristic impedance 
of the QWT to be inserted, therefore, should be Zo√(1−Γl)/√(1+Γl)= Zo/√ρ. And at maxima,  
which occurs at a distance of ±λ/4 from the minima, the line impedance is Zo(1+Γl)/(1−Γl)= Zoρ, 
and hence,  the  characteristic impedance of  QWT  should be Zo√(1+Γl)/√(1−Γl)= Zo√ρ. All the 
details pertaining to QWT matching technique for complex loads are given in Table 15.2 

A short circuited λ/4 line is used for matching. The impedance at short circuit end is zero 
and at the other end it is infinity. In between the ends, impedance varies as sqaure of distance 
from shorted end. As shown in Figure 15.5(a), the load to be matched is connected across the 
output terminals, and the line to be matched is connected at a distance d from shorted end  of λ/4 
line where its impedance is equal to line impedance to be matched. When two different lines are 
to be matched to the same load, then the scheme shown in Figure 15.5(b) is suitable. For this 
technique, there is a limitation. At the input terminlas of a practical short circuited λ/4 line, input 
impedance is finite, not infinite. And hence, this  system works well only when line to be 
matched has an impedance less than that which exists at the open circuit end of transformer.  

Figure 15.5 Load matching with tapped quarter-wave line.(a) single line Ra matching (b) two 
lines Ra , Rb matching to load, Rl   
A serious drawback associated with this technique is due to QWT being a single 

frequency or narrow-band device, implying that this technique works satisfactorily only over a 
small band of frequencies. However, by transforming in smaller impedance steps, by using two 
or more quarter wave sections in series, each one accomplishing part of the total transformation, 



the bandwidth may be increased greatly. But it is the smooth and gradual transition gives 
maximum enhancement.  

Another drawback is, it fails to function as a reflection suppressing device for a short 
pulse. Only for steady state condition or for a very long pulse, this device can provide a match. 
To avoid reflections for short pulses a gradually tapered line is needed.   
------------------------------------------------------------------------------------------------------------------- 
Example 15.7:  A quarter-wave transformer is used to match a 300Ω main line to a 200Ω  
secondary line terminated over its CI. When the system is working at 30MHz, assuming a 
velocity facator of 0.65, find physical length and CI of transformer.  Also find VSWR over the 
main line when the transformer is not inserted. 
Solution:  
Assuming loss-less conditions, the physical length, l of λ/4 transformer can be computed as,  

   

8

6

0.65 0.65 3 10 1.625m
4 4 4 30 10

cl
f

  
   

   

Figure 15.6 A secondary line feeding main line through a QWT.  
The secondary line is terminated over its CI, and hence, its input impedance, which is also load 
of transformer, is same as its CI. As transformer is providing matching to main line, transformer 
input impedance must be CI of main line. Thus,  transformer´s CI becomes, 

, , , 300 200 245o q o m in s    Z Z Z  
Without transformer, the load of main line is input impedance of secondary line, equal to 200Ω. 
Hence, VSWR becomes,  

Max( , ) 300 1.5
Min( , ) 200

o l

o l

R R
R R

     

Example 15.8: Determine CI and physical length of  load matching QWT for the given data:  
(a) line Zo= 100Ω, Zl= 150Ω,C=12pF, f=10MHz 
(b) line Zo= 75Ω, Zl= 50Ω, εr=2.25, f=50MHz 
(c) line Zo= 125Ω, Zl= 100Ω, velocity factor =0.8, f=100MHz 

Solution:  
(a) line Zo= 100Ω, Zl= 150Ω,C=12pF, f=10MHz 
CI of QWT becomes,  

, 100 150 122.47o QWT o o    Z Z Z  
The physical length of QWT is,  

  6 12

1 1 17.01m
4 4 4 4 10 10 12 10 122.47o

vl
f fC


    

    Z
  

(b) line Zo= 75Ω, Zl= 50Ω, εr=2.25, f=50MHz 
CI of QWT becomes,  

, 75 50 61.24o QWT o o    Z Z Z  



The physical length of QWT is,  
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(c) line Zo= 125Ω, Zl= 100Ω, velocity factor =0.8, f=100MHz 
CI of QWT becomes,  

, 125 100 111.80o QWT o o    Z Z Z  
The physical length of QWT is,  
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Example 15.9: Determine CI and physical length and physical distance of insertion from the 
load of a matching QWT for the given data:(C and εr  pertains to QWT)  

(a) line Zo= 100Ω, Zl= 50+j75Ω, C=12pF, f=10MHz. 
(b) line Zo= 125Ω, Zl= 50‒j75Ω, εr=2.25, f=50MHz. 

Solution:  
(a) line Zo= 100Ω, Zl= 50+j75Ω,C=12pF, f=10MHz. 
RC over load and SWR over line can be found as,  

 50 75 100 0.537 1.69
50 75 100

l o

l o

j
j

  
   

  
Z Z
Z Z

   

 1 1 0.537 3.32
1 1 0.537


 

  
 

 

As load impedance is inductive, QWT insertion point is voltage maximum. Hence, 
characteristic impedance of QWT becomes,  

, 100 3.32 182.20o QWT o o o     Z Z Z Z  
The physical length of QWT is,  

  6 12
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Physical location of  QWT is right over max whose distance from load,  dq is, 
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(b) line Zo= 125Ω, Zl= 50‒j75Ω, εr=2.25, f=50MHz. 
RC over load and SWR over line can be found as,  

 50 75 125 0.557 1.95
50 75 125

l o

l o

j
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  
   
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 1 1 0.557 3.51
1 1 0.557


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As load impedance is capacitive, QWT insertion point is voltage minimum. Hence, 
characteristic impedance of QWT becomes,  
 , / / 125 / 3.51 66.72o QWT o o o     Z Z Z Z  
The physical length of QWT is,  
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Physical location of  QWT is right over voltage min whose distance from load  dq is, 
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Example 15.10: A loss-less Zo=125Ω line, terminated over an unknown impedance carries a 
wave with SWR=2.25. It is found that the first voltage maximum is at a distance of λ/8 from 
load. (a) Determine load impedance, Zl . For matching, a QWT with a CI of Zo1 is inserted. (b) 
Find out the minimum distance between load and quarter wave line and (c)value of  Zo1 in terms 
of Zo . Rework the problem when it is first minimum at λ/8 instead of maximum. 

Solution: 
 First Vmax at  λ/8:  

1 2.25 1 0.385 1.57rad
1 2.25 1 8 4
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l

  
 
 

      
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1 1 0.385 1.57125 (92.78 83.87)
1 1 0.385 1.57

l
l o
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Z Z 
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 , 125 2.25o QWT o o o     Z Z Z Z  
First Vmin at  λ/8:  

1 2.25 1 0.385 1.57rad
1 2.25 1 8 4
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1 1 0.385 1.57125 (92.78 83.87)
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 , / / 125 / 2.25o QWT o o o     Z Z Z Z  
 
Example 15.11: For a 75Ω loss-less line, find the location nearest to the load to insert QWT and 
the CI of QWT required to achieve matching  for each of the following values of RC over the 
load, (a) Γl =1/9, (b) Γl = –j0.5 and (c) Γl =j/3. 
Solution: 
 In the solution procedure, the first step is to ascertain whether it is minimum or maximum 
that occurs nearest to the load.  
(a) In this case, over the load, the RC is pure real, and hence, its angle is zero i.e. θl = 0. It 
implies that load is pure real, voltage maximum or minimum occurs right over the load, 
depending upon Zl > Zo or Zl < Zo. In both the cases, insertion point is right over the load. In the 
first case, maximum is right over the load, the CI of QWT can be computed as, 

 
 

 
 ,

1 1 91 1075 75 83.85
1 81 1 9

l
o q o

l

        
    

Z Z   

In the second case, minimum is right over the load, the CI of QWT can be computed as, 

   
 

 
 ,

1 1 91 875 75 67.08
1 101 1 9

l
o q o

l

       
    

Z Z  



(b) In this case, over the load, the RC is negative and pure imaginary. And hence, the load is 
capacitive, nearest to load is minimum, where QWT can be inserted. Its CI is computed now: 

   
 

 
 ,

1 0.51 0.575 75 43.30
1 1 0.5 1.5

l
o q o

l
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  
Z Z  

(c) In this case, over the load, the RC is positive and pure imaginary and hence, the load is 
inductive, nearest to load is maximum, where QWT can be inserted. Its CI is computed now:  

   
 

 
 ,

1 1 31 475 75 106.066
1 21 1 3

l
o q o

l
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Z Z  

--------------------------------------------------------------------------------------------------------------------- 
15.2.2. Single-stub matching 

Stubs are small length, usually less than one half wavelength, loss-less lines  with either 
an open ciruit or short circuit as termination. Short circuit is almost always preferred as open 
circuited stubs tend to radiate. These are widely used for load matching purpose. Their input 
admittance is pure susceptance, and depending upon the stub length, it can be inductive or 
capacitive. Stubs are used to nullify the line susceptance at the point of connection.When the line 
admittance is inductive susceptance, captive stub and in case of captive susceptance, inductive 
stub is used to nullify it.  

Figure 15.7 Load matching with a shorted single stub.(a) Stub connection and (b) type of 
waves over a stub matched line.(a=13.2modified) 

Let us consider a piece of loss-less line, with characteristic impedance, Zo, terminated 
over a load, Zl ≠ Zo. As the termination impedance is not equal to characteristic impedance, 
reflected wave, most of the times unwanted, comes into being over to the line. To eliminate the 
reflected wave, from a major portion of the line, several techniques are designed. One of such 

method is single stub matching technique, involving connection of a short circuited stub of 
length, ls to the line at a distance of  ds from the load side end, as shown in Figure 15.3.  



Figure 15.8 Normalized line admittance in the vicinity of a voltage minimumm and 
maximum.  

To understand the concept behind, consider a loss-less line and its normalized admittance in the 
neighborhood of a voltage minimumm and maximum, as shown in Figure 15.8. At Vmin and at 
Vmax  normalized line admittance is pure conductive, g at the former it is more than one and at 
the later less than one. In between Vmin and Vmax  at some point over the line, the conductivity 
assumes a value equal to one and hence, surrounding Vmin there exists two such points where g 
=1. As susceptance is positive on right side, negative on left side, the point on the right side can 
be specified as 1+jb and that on left side as 1‒jb. Also note that these two points, 1±jb are with in 
a distance of  λ/2 from load.     
 A stub is connected at one of these two points, usually the one that is nearest to load,  ds 
selecting its length, ls  such that its susceptance is equal to that of the line at that point but 
opposite in sign, there by nullifying the line susceptance at that point. After stub connection, 
normalized line admittance is 1, denoting that line is matched.   

Two possibilities arise, one pure resistive termination and the other complex impednace 
termination. Both are considered and analyzed.  
Pure resistive load: The location of connection and length of stub are dependent upon the 
impedances of line and load. The smallest possible distance, ds from the load side, where the stub 
can  be attached is given by,   
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        (15.9)    

The shortest  possible stub length, ls  is given by,  
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     (15.10)
 

Here, when Zl > Zo, n assumes zero value and sign is + and for  Zl < Zo , n is 1 and sign is ‒.  Zos 
is CI of stub and  when it is made from the same line,  Zos = Zo . The above relations, in 
Eqs.(15.9) and (15.10), are valid only for purely resistive termination. The derivation of the 
above relations can be found in one of the solved Examples.  
 
Complex impedance load: Most general situation is the one in which the line termination is a 
complex impedance. The relations, giving ds and ls, useful even for such a situations are 
available and given below.  

The smallest possible distance, ds from the load, where the shorted stub can be connected 
is given by,  
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    (15.11) 

Here, as b is the normalized susceptance of the stub, – b shall be that of the line at the 
point of stub connection. The upper sign is to be considered for positive values of b and the 
lower sign for its negative values. The angle, θl  denotes the angle of the RC over the load. The 
integer, n can assume any value, positive or negative including zero, such that the distance of the 
stub is within a one half wavelength.  The shortest length of stub, ls  can be found from, 
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    (15.12) 

 The value of  b in terms of RC magnitude, l  is  

2

2
1

l

l

b 
 


       (15.13) 

Usually, Γl  is given and from it b, ds and ls can be easily computed. 
 Now, the derivation of single stub technique relations pertaining to complex impedance 
termination is considered. Let us suppose stub of  susceptance b is connected at point P located 
at a distance of  ds  from load. After the attachment of stub, the normalized line admittance, y at 
connection point P must be equal to ′1′ for matching. However,  before the connection of stub, 
the admittance of the line must be,  

   1 jb y  
And the corresponding RC Γp i.e. at P  is  

1
1 2p

jb
jb


 

 
yΓ
y

 

It is already seen that, for a loss-less line, the RC over the load Γl can be expressed in terms of 
RC over the line at the stub location, Γp as  

 12 tan 2 2 2

22 4
ss s

j b d nj d j d
l p

bjbe e e
jb b

   
   

  
 

Γ Γ  

The phase of RC, Γp is equal to phase of its numerator (±π/2) subtracted by phase of the 
denominator (± tan-1 |b|/2 +2nπ). In the above expression, the upper sign is to be considered for 
positive values of b and the lower sign for its negative values and n can assume positive or 
negative integer values. The RC magnitude, Γl over the load is,  
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l l
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(15.14a) 

Solving Eq. (15.14a) for b results  in Eq. (15.13). The phase angle of RC is,  
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Figure 15.9 Pertaining to derivation of single stub matching. For (a) positive b and for (b) 
negative b.(13.3) 

Solving Eq. (15.14b) for ds results in upper part of Eq. (15.11). Using the information from 
Figure 15.9, the location of the stub can be expressed in terms of RC, as given in lower part of 
Eq. (15.11). Once ds is available, length of the stub can be computed from the requirement of 
nullification of line susceptance by the stub for matching i.e. cot βls = –b. Solving this equation 
results in an expression for ls as Eq. (15.13). The ls can also be expressed in terms of Γl using Eq. 
(15.13) in Eq. (15.12). In the above relations, θl  represents the angle of the RC over the load and 
Γl  is the magnitude of the RC (magnitude of the RC over a loss-less line remains same 
independent of the location).   

An important aspect of stub matching technique is the existence of reflected wave over 
various portions of line, in between source and the load. The reflected wave is absent only in 
between source and the point, where the stub is connected. However, it exists over the line in 
between point of stub connection and the load, incurring reflection losses, which depend upon 
length of line under reflected wave. And, the relation for stub location, available in Eq.(15.9) 
gives several points over the line, but  to have a smallest possible line length under reflected 
wave, it is advisable to select a point  which is nearest to the load.  

The chief drawback of single stub technique is its narrow bandwidth. With change in 
frequency, the length and location of the stub has to be changed and it is the change of the 
location of the stub that is more troublesome. Another disadvantage is in the final adjustment the 
stub, which requires a very minute movement over the line. This is not possible for coaxial lines, 
resulting in ultimately an inaccurate matching. 

To overcome these disadvantages, instead of one, two short circuited, position fixed stubs 
whose lengths are adjustable, independently, are used. The distance of the nearest stub from the 
load and the inter-stub distance is normally is either λ/4 or 3λ/8. The distance between the 
farthest stub and load, should be as small as possible so that a minimum possible length of line 
under reflected wave, incurring least amount of reflection losses.  
Example 15.12: Derive the expressions for stub length and stub position when the load is pure 
resistance.  
Solution:  

Consider a loss-less line i.e. with pure real characteristic impedance Zo= |Zo| =Zo 
terminated over a pure resistancei.e.Zl= |Zl| =Zl. Let us suppose stub is connected to line at point 
P which is at a distance of ds from the load end. The normalized line impedance at this point is, 
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The corresponding normalized admittance is,  
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Let it be g' + jb' and now, rationalizing yp gives, 
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By equating the real and imaginary parts results in   
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If the normalized admittance yp is made unity, indicating a match, then reflected wave over the 
line left of the point P disappears.The parameter yp can be made unity i.e. yp = g'=1by proper 
selection ofds. The distance ds of the point Pfrom the load end which makes g'=1can be found 
from, 
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Solving this relation for ds results, 
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Ultimately it results in an expression for ds  as,  
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The length of the short circuited stub which nullifys susceptance b'of the line can be found from 
the fact that, for nullification, its input admittance must be equal to –b' .Assuming that the stub 
has characteristic impedance equal to that of the main line, the input admittance of a short 
circuited stub of length lsis pure susceptance equal to, 
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The normalized admittance of stub, scy can be found as, 
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For nullification, the normalized admittance of stub, sc y . Hence,  
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Substituting 2tan s ld z  in the above relation  
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Solving the above equation for sl  gives   
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     
 

In the above expression, nπ is used as tan is periodic with π, and, as the requirement is shortest 
length, when Zl > Zo, n assumes zero value and sign is + and for  Zl < Zo , n is 1 and sign is ‒. 

 
When the stub used has different characteristic impedance, Zos the input susceptance of the short 
circuited stub is equal to–Yos cotβls. If b' is the normalized susceptance then the susceptance of 
line at the stub connection point becomes Yob'. Thus, for matching, 

 
 

2

2 2

1 tan
cot

1 tan
l s

os s o o
l s

y d
Y l Y b Y

y d







 

  
 
 

2

2 2

1 tan
cot

1 tan
l so

s
os l s

y dYl
Y y d









  
Substituting tan2βds= Zl /Zo =zl in the above relation and then solving for  ls results in   

 
1tan

2
l oo

s
os l o

Z ZZl n
Z Z Z

 



 

      

Example 15.13: A loss-less line, working at 100MHz with εr =2.1 and μr= 1, is to be matched to 
its load by means of a short circuited stub.  Find the stub position closest to the load and its 
shortest length so that match is achieved when the characteristic and load impedances are (a) Zo 
=50Ω, Zl =100Ω and  (b) Zo =100Ω, Zl =50Ω.   
Solution:  
The wave velocity is,   

 

8
83 10 2.07 10 m/sec

2.1r r

cv
 


   

 
The wave length, ratio of wave velocity to frequency, is  

 
10 62.07 10 100 10 207cm      

(a) The distance of stub, ds from the load end can be obtained as,   
1 1207 100tan tan 32.9 0.955 31.47cm

2 2 50
l

s
o

d 
 

     
Z
Z

     

In this case, Zo < Zl , and hence, stub length, ls can be found as,   

1 1207 100 50tan tan 32.9 0.955 31.47cm
2 2 100 50

l o
s

l o

l 
 

  
    

 
Z Z

Z Z
  

(b)The distance of stub, ds from the load end, can be obtained as,   
1 1207 50tan tan 32.9 0.6154 20.28cm

2 2 100
l

s
o

d 
 

     
Z
Z

     

In this case, Zo > Zl , and hence, stub length, ls  can be found as,   



1 1207 50 100tan tan 103.5 31.47 72.04cm
2 2 50 100

l o
s

l o

l 
 

 
 

     
                     

Z Z
Z Z

  

Example 15.14: A loss-less 75Ω line with insulation dielectric constant, εr=2.25, is matched to a 
load of 100Ω at 200MHz by means of a parallel shorted stub. Determine (a) length of stub and its 
position nearest to load. If the frequency is changed to 250MHz, without altering the circuit in 
anyway,  find the (b)VSWR on the main line 
Re-work the problem, when CI is 100Ω and load impedance is 200Ω. 
Solution:    
Wavelengths corresponding to 200 MHz and 250 MHz are,   

8 8

6 6

3 10 3 101m & 0.8m
200 10 2.25 250 10 2.25

 
 

   
 

  

Distance and lengths of the shorted parallel stub are, 
1 11 100tan tan 13.64cm

2 2 75
l

s
o

d 
 

   
Z
Z

1 11 100 75tan tan 20.50cm
2 2 100 75

l o
s

l o

l 
 

  
  

 
Z Z

Z Z
 

After altering the frequency, the line impedance at stub conncted point is,  
2 2 0.1364 1.071 & tan 1.83

0.8s s sd d d 
 


       

,
tan 100 75 1.8375 64.43 0.24
tan 75 100 1.83

l o s
in l o

o l s

j d j
j d j




  
   

  
Z ZZ Z
Z Z

 

The input impedance of stub is,  
2 2 0.205 1.61 & tan 25.45

0.8s s sl l l 
 


       

, tan 75 ( 25.45) 1908.75 1.57in s o sj l j     Z Z  
The effective load impedance on the main line is parallel combination of line impedance and 
stub impedance. Hence, 

, , 64.43 0.24 1908.75 1.57 63.88 0.27l in l in s      Z = Z || Z ||  
The RC over the effective load impedance, and SWR over the line are,  

63.88 0.27 75 0.158 2.11
63.88 0.27 75

l o

l o

   
   

   
Z Z
Z Z

   

1 1 0.158 1.37
1 1 0.158


 

 
 

  

When Zo=100Ω and Zl=200Ω, stub length and distances become, ls=15.20cm, ds=15.20cm with 
SWR =1.56 

Example 15.15: A loss-less line of CI Zo = 60Ω is to be matched to the  load of 30Ω by means 
of a short circuited stub of same CI.  Determine, using both sets of formulae, the stub position 
closest to the load and its length to obtain match.   
Solution:  
The termination is pure resistance. The distance of stub, ds from the load end, can be found as,   



 1 1 30tan tan 0.098
2 2 60

l
s

o

d  


 
   

Z
Z

  

The stub length, ls can be found as 

1 1 30 60tan tan 0.5 0.152 0.347
2 2 30 60

l o
s

l o

l  
    

 
 

     
                     

Z Z
Z Z

 

The above results can also be obtained using general relations. For the given values, RC over 
load can be found as, 

30 60 1 0.33
30 60 3

l o
l

l o


 

     
 

Z ZΓ
Z Z

 

Susceptance of the stub can be obtained as, 

 
2

2
1

l

l

b 
 

 2

2 0.333 0.706
1 0.333


   


 

Distance of stub from load, can be computed as, 
1 0.706tan 2

4 2 2sd n  


   
 
   

 0.25 0.125 0.027 0.5n     

 
 
0.098 0.5 for 0
0.402 0.5 for 0

n b
n b



    
 

In the above expression, a value for n should be selected such that the distance is within one half 
wavelength. In the present case, the appropriate value is zero. Hence,  

0.098 for 0
0.402 for 0s

b
d

b




  

 

The smaller one of the above two is 0.098λ which happens when b > 0. The length of the stub, 
for such case can be found as,  

 1 1tan 0.956 0.347
2 0.706 2 2 2sl
    
 

        
 

 

 Notice, both sets of formulae give the same result. 
Example 15.16: A loss-less 60Ω line is to be matched to a complex impedance load by means of 
a short circuited stub. Given that stubs are made from the main line and complex impedance load 
(a) Zl= (12– j24)Ω and (b) Zl= (12+j24)Ω. Determine the stub position closest to the load and its 
length so that match is obtained.   
Solution:  
Given that stubs are made from the main line, and hence, their CIs is same as that of main 
line.Here the load is complex and the the required quantities can be found as follows:     
(a)  Zl = (12– j24)Ω  For the given values, RC over load,  

 
 
12 24 60

0.707 2.356
12 24 60

l o
l

l o

j
j

 
   

  
Z ZΓ
Z Z

 

Magnitude of the coefficient, Γl and its phase, θl  are 0.707 and −2.356 rad. Susceptance of the 
stub can be obtained as, 



2

2
1

l

l

b 
 

 2

2 0.707 2.00
1 0.707


   


 

Distance of stub from load can be found as, 
1 2.002.356 tan 2

4 2 2sd n  


    
 

 
 

 0.187 0.125 0.0625 0.5n   
  

 
0.3745 0.5 for 0

0.0005 0.5 for 0
n b

n b



       
In the above expressions, appropriate value for n is −1 for b>0 and 1 for b<0. Thus, distance of 
stub from load is, 

 

0.1255 for 0
0.4995 for 0s

b
d

b




    

The length of the stub, for each case can be found as  

 

 

1

1

1tan 0.464 0.426 for 0
2 2 2

1tan 0.464 0.0738 for 0
2 2 2

s

b
l

b

 
  

 
  
 





          
       

 
 

Closest postion and corresponding length of stub are, 0.1255λ and 0.426λ. 
(b)  Zl = (12+j24)Ω 
For the given values, RC over load,  

 
 
12 24 60

0.707 2.356
12 24 60

l o
l

l o

j
j

 
   

  
Z ZΓ
Z Z

 

Magnitude of the coefficient, Γl and its phase, θl  are 0.707 and 2.356 rad. Susceptance of the 
stub can be obtained as, 

2

2
1

l

l

b 
 

 2

2 0.707 2.00
1 0.707


   


 

Distance of stub from load can be found as, 
1 2.002.356 tan 2

4 2 2sd n  


   
 

 
 

 0.187 0.125 0.0625 0.5n  
  

 
0.0005 0.5 for 0

0.3745 0.5 for 0
n b

n b



       
In the above expressions, appropriate value for n is −1 for b>0 and 0 for b<0. Thus, distance of 
stub from load is, 

 

0.4995 for 0
0.3745 for 0s

b
d

b
 

    
The length of the stub, for each case can be found as  



 

 

1

1

1tan 0.464 0.426 for 0
2 2 2

1tan 0.464 0.0738 for 0
2 2 2

s

b
l

b

 
  

 
  
 





          
       

 
 

Closest postion and corresponding length of stub are, 0.3745λ and 0.0738λ. 
 
Example 15.17: A 50Ω loss-less line is to be matched to a complex impedance load by means of 
a short circuited stub. Given that stubs are made from the main line and complex impedance load 
Zl= (30– j40)Ω. Determine the stub position closest to the load and its length so that match is 
obtained.   
Solution:  
 
 Given that Zo = 50Ω  and Zl = (30– j40)Ω. Substituting the given values, one can obtain, the RC 
over load as, 

30 40 50 0.5 1.57
30 40 50

l o
l

l o

j
j

  
   

  
Z ZΓ
Z Z

 

Magnitude of the coefficient, Γl and its phase, θl are 0.5 and −1.57 rad. Susceptance of the stub 

 
2 2

2 2 0.5 1.155
1 1 0.5

l

l

b  
     

 
 

Distance of stub from load is, 
1 1.1541.57 tan 2

4 2 2sd n  


    
 

   

 

 

0.523 2 for 0
4

0.523 2 for 0
4

n b

n b

  

 


     
  


 

 
 

0.292 0.5 for 0
0.042 0.5 for 0

n b
n b




     
 

 
In the above, the values for n are −1 for b > 0 and zero for b < 0, resulting in a distance of 

less than one half wavelength. 
 
 
0.208 for 0
0.042 for 0s

b
d

b



  
 

The length of the stub for such case is  

 

 

1

1

1tan 0.714 0.386 for 0
2 1.154 2

1tan 0.714 0.1136 for 0
2 1.154 2

s

b
l

b

 
  

 
  
 





          
       

 

Closest postion and corresponding length of stub are given by 0.041λ and 0.1136λ. 



Example 15.18: A 50Ω transmission line, working at 0.5 GHz, having a wave velocity, 
v=1.5×108 m/s is terminated on an unknown impedance. It is found that, VSWR is 4 and the first 
minimum is formed at 2cm from the load end. Design a single stub impedance matching for the 
given conditions. 
Solution: 
The wavelength corresponding 1 GHz frequency, assuming wave velocity equal to free space 
velocity, is λ=v/f=1.5×1010/0.5×109=30cm. To find the distance and length of the stub, it requires 
the magnitude of RC and angle of RC over the load. These two parameters can be obtained from 
the given data as follows. 

1 4 1 0.6
1 4 1l



 

   
 

 

min min2 2l ld d            
2 22 2 2 2 0.73 rad

30l
 

   


           

Magnitude of the coefficient, Γl and its phase, θl are 0.6 and −0.73π rad. Now, the susceptance of 
stub can be obtained as, 

2 2

2 2 0.6 1.2 1.5
0.81 1 0.6

l

l

b  
       

 
 

Distance of stub from load can be found as, 
1 1.50.73 tan 2

4 2 2sd n  


    
 

   

 

 

 

1.23 0.643 2 for 0
4

0.23 0.643 2 for 0
4

n b

n b

  

  


     
    


 

 
 

0.359 0.5 for 0
0.006 0.5 for 0

n b
n b




      
 

In the above, appropriate value value for n  is –1. 
0.141 4.23cm for 0
0.494 14.82cm for 0s

b
d

b


 

   
 

Now, the length of the stub can be computed as, 
1

1

1tan for 0
2 1.5

1tan for 0
2 1.5

s

b
l

b












       
     

 

 

 

0.588 12.19cm for 0
2

0.588 2.81cm for 0
2

b

b

 




    
  


 

Closest postion and corresponding length of stub are given by 4.23cm and 12.19cm. 



--------------------------------------------------------------------------------------------------------------------- 
15.2.3. Double stub matching 

In certain situations, single stub matching is difficult to implement, particularly in case of 
coaxial lines, where it is just not possible to place the stub physically over the line in an ideal 
location. In double stub matching, two stubs are used whose lengths can be adjusted at will, 
giving more degrees of freedom to the matching designer. The stubs can be connected as near to 
load as possible and the lengths of the stubs are adjusted to get proper matching, as shown in 
Figure 15.10.  

Now, analytical expressions for susceptances, and from them, the lengths of stubs to be 
connected to the line for matching purpose, are derived. Here, the inter-stub spacing is 
designated by dss, distance of the near-stub from load by dn , the length of near-stub by lsn and the 
length of the far-stub by lsf . After connection of the far-stub, the normalized admittance at its 
point of connection must become unity, to achieve matching. If the far-stub susceptance is bf , 
then earlier to its connection, the admittance,  y'f  and RC, Γ'f  of the line at the point of its 
connection are,  

1f fjb  y          (15.15) 

1
1 2

f f
f

f f

jb
jb


  

 
y

Γ
y       

(15.16) 

 

Figure 15.10 Load matching with shorted double stubs. (a)Stub connected at 11' is near stub and 
the one at 22' is far stub and (b) type of waves over various parts of the 
system.(a=13.4modified)  

Then, the RC of the line at the location of the near-stub becomes, 

  
2

ss ssfj d j d
n f

f

jb
e e

jb
  


Γ = Γ      (15.17) 

The normalized admittance of the line at the point of near-stub location is,  

1
1

n
n

n





Γy
Γ

 2

2 2

4 4 cos 2 2 sin 2
4 4 sin 2 4 sin

f ss f ss

f ss f ss

j b d b d
b d b d

 

 

 


 
   (15.18) 

 
If the near-stub susceptance is bn, then before its connection, the admittance of the line at the 
point of its connection is,   

n n njb  y y    2 2

1
1 sin 2 sinf ss f ssb d b d 


 

 



2

2 2

sin 2 2 cos 2
2 2 sin 2 2 sin

f ss f ss
n

f ss f ss

b d b d
j b

b d b d
 
 

 
     

 

n ng jb          (15.19) 
Equating the real parts of both sides results in  

2 2

1
1 sin 2 sin n

f ss f ss

g
b d b d 


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Solving this, Eq. (15.20) for bf  results in  
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One can notice that the Eq. (15.21) cannot have a solution for bf  when value of 1/sin2βdss is less 
than g'n. Hence, it is not possible to arrange matching for loads which results in such kind of 
inequality. A simple technique by which this difficulty can be overcome is to increase the inter 
stub spacing by a one quarter wavelength. However, if the value of 1/sin2βdss is more than or 
equal to g'n, then  bf  has two possible values. The corresponding values of bn are, then given by,  
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(15.22) 

Once bn and bf are known, the lengths of the two stubs can be computed easily, as done in case of 
single stub matching technique. 
------------------------------------------------------------------------------------------------------------------ 
Example 15.19: For each set of the given values, (a) dn = 0, dss = 3λ/8   with zl=0.3+j0.4,  (b) dn 
= λ/8 , dss = 3λ/8  with zl=0.5 and (c) dn = λ/4 , dss = 5λ/8  with zl=2.5–j5.0, determine whether 
double stub matching technique is feasible or not. 
Solution: 
It is feasible to achieve match with double stubs only when real part of input admittance of the 
line section, from stub 1 location to the load, is less than or equal to 1/sin2βdss.  
 
(a)Given, dn = 0, dss = 3λ/8  with zl=0.3+j0.4. With dn = 0, the tan βdn becomes zero. It gives 
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The real part of the admittance then is Re[yin] =1.2. Next, one can calculate the value of 
1/sin2βdss. 
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 Double stub matching: 
1. For double stub matching to be possible, the condition to be satisfied is  

21 sinn ssg d  .  
2. Other wise increase dss by λ/4so that the above condition is satisfied. 



 
From the obtained values, as 1.2 < 2 i.e. Re[yin] <1/sin2βdss, double stub matching technique is 
possible. 
(b)Given, dn = λ/8 , dss = 3λ/8  with zl=0.5. With dn = λ/8, then  
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It gives, 
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The real part of the admittance then is Re[yin] =0.8. Next, one can calculate the value of 
1/sin2βdss. 
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From the obtained values, as 0.8 < 2 i.e. Re[yin] <1/sin2βdss , double stub matching technique is 
possible.

 (c)Given, dn = λ/4 , dss = 5λ/8  with zl=2.5–j5.0. With dn = λ/4, then  
2tan tan tan .
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With tan βdn →∞, the normalized input admittance becomes  
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The real part of the admittance then is Re[yin] =2.5. Next, one can calculate the value of 
1/sin2βdss. 
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From the obtained values, as 2.5 > 2 i.e. Re[yin] >1/sin2βdss, double stub matching technique can 
not be applied. 
--------------------------------------------------------------------------------------------------------------------------------------- 
15.3. SMITH CHART 

Smith chart is the best known and widely used graphical aid in solving transmission line 
problems. It was developed in 1939 by Phillip Hagar Smith(1905–1987), an electrical engineer. 
He obtained BS degree in 1928 from Tufts College and when working for Bell Labs, he 
developed a polar plot of complex RC with the normalized impedance or admittance in a unity 
circle, the now well-known as Smith chart. The real utility of this chart is that it can be used to 
convert RC to its corresponding normalized impedance and admittances.  
15.3.1 Smith chart features 
The Chart is circular in shape, and it has two sets of curves: one set is of complete circles and the 
other one consists of circular arcs. They are described in a little more detail below:   

1. The complete circles are called constant resistance r circles or constant conductance g 
circles. The centers of these circles lie over a horizontal straight line, passing through 



center of the chart. These circles represent the normalized resistance/conductance at 
various points over a loss-less transmission line of one half wavelength long. 

2. There is a horizontal straight line, dividing the chart into two, upper half and lower half, 
and passing through center of the chart. The center point is designated as '1', on the left 
side with values less than one, upto zero and on the right side with values more than one, 
upto infinity. 

3. The circular arcs are called constant reactance x arcs or constant susceptance b arcs. 
These arcs lie on both sides of the horizontal line. They represent values of the 
normalized reactance/susceptance at various points over a loss-less transmission line of 
one half wavelength long. The horizontal line denotes zero reactance and susceptance. 
 

4. The two sets of curves, one set of complete circles and one set of circular arcs, form two 
different families, and they are mutually orthogonal i.e. the circles and arcs are always 
orthogonal to each other. Also note that all the curves of both the sets, pass through the 
rightmost point of the chart, representing, Γr =1, Γi = 0. 

5. The chart can be used either as an impedance chart or as an admittance chart. When used 
as impedance chart, the circles denote resistance and arcs represent reactance. However, 
the same circles denote conductance and same arcs represent susceptance, when it is used 
as admittance chart. 

6. Movement from left to right, over the chart, corresponds to circles of decreasing radii, 
denoting the increasing in resistance/conductance. The largest circle at the border of chart 
denotes a resistance/conductance of zero. 

7. The horizontal line divides the chart into an upper half and a lower half. The upper half of 
the chart denotes positive reactance/susceptance i.e. normalized inductive 
reactance/capacitive susceptance whereas the lower half represents negative 
reactance/susceptance i.e.  the normalized capacitive reactance/ inductive susceptance. 

8. The chart can also be divided as left half and right half. In the left half, 
resistance/conductace values and reactance/susceptanace values are less than one. In the 
right half, resistance/conductace values and reactance/susceptanace values are more than 
one 

9. The chart can represent the line impedance only for one half-wavelength long. However, 
as the line characteristics are periodic with a periodicity of one half-wavelength, the chart 
can be made use for any length of line. 

10. The chart can be used only with normalized quantities i.e. normalized impedances/ 
admittances. The normalization is with respect to the load impedance. 

11. In the upper half of chart, clockwise movement corresponds to increase in inductive 
reactance/capasitive susceptance whereas in the lower half, clockwise movement 
corresponds to decrease in capacitive reactance/inductive susceptance.  

12. The movement, on the line, towards the generator corresponds to clockwise motion on 
the chart and towards the load corresponds to anti-clockwise motion.  

13. The horizontal radius to the right of the chart centre corresponds to voltage maxima,Vmax 
current minima, Imin impedance maxima, zmax and SWR, ρ and left of the chart centre 
corresponds to voltage minima, Vmin current maxima, Imax impedance minima, zmin and 
inverse SWR,1/ρ. Also the location of Vmaxcorresponds to zmax= ρ on the line and that of  
the Vmin corresponds to a point of zmin=1/ρ . 



14. Radial lines represent loci of the constant line angle, βz. In the chart, wavelength scales 
corresponding to the line angle are included around the outside edge of the chart. 

15. For a lossy line not terminated in its characteristic impedance the path of travel on the 
chart from the load to the generator is a decreasing logarithmic spiral.   

Theory: The normalized impedance, z and RC, Γ at any arbitrary point over a loss-less line are 
related through, 
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       (15.23) 

Both the impedance and RC are complex, having real and imaginary parts. Let z = r +jx and Γ= 
Γr+jΓi . Then the above relation can be written as, 

 

After multiplying the numerator and denominator of the right hand side of the above equation 
with conjugate of denominator, equating real parts on both sides of the equation results in, 
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And, equating imaginary parts on both sides of the equation results in, 

      
 (15.24b) 

These two equations can be rearranged as    
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16. One can notice that these two expressions, Eqs. (15.25a&b), represent circles on complex 
RC plane. The first one represents a family of constant resistance circles with radius 
1/(1+r) and centre at r/(1+r) along the real axis. The second one represents a family of 
constant reactance circles with radius 1/x and centre at Γr=1, Γi=1/x. The salient features 
of the Smith chart are illustrated in Figure 15.11.  
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Figure 15.11 Illustrating formation and salient features of Smith chart.(13.5and 
13.7modified) 
A chart that is used in practice is given in Appendix. To make use of the chart effectively, 

all its features are required to be known.  One among them is about 'constant SWR circle' which 
is elaborated below:  
 

1. The 'constant SWR circle', also known as 'constant ρ circle', is a circle drawn on the chart 
with SWR as radius and '1' of the horizontal line as centre.  

2. The impedances represented by various points over the SWR circle denote the impedance 
of line at various points within a length of λ/2 . 

3. Distance along the line is represented by angular distance around the chart, total 
circumference or 3600 corresponding to the line length of λ/2.  

4. The point at which the constant SWR circle intersects the horizontal straight line, right 
side of center, corresponds to SWR of the load.  

5. For each different value of SWR, there exists a separate circle with a different radius. 
6. Constant SWR circles are concentric circles, with centres over '1', having different radii 

representing different SWR values. These circles intersect horizontal line at points,1/ρ 
and ρ, representing impedances equal to Zo/ρ and Zoρwhere Zo is characteristic impeance 

 
15.3.2. Smith Chart Utility 
 Smith chart can be used to find a variety of quantities of transmission lines without doing 

complex computations. Some of them are mentioned below.  
  

 VSWR over the line: To find VSWR  over the line, first normalize the load impedance with 
characteristic impedance, Zo of the line and let it be  r + jx . Now locate this impedance over the 
Smith chart at a point, where  circle of r and arc of x intersect and let it be at P, as shown in 
Figure 15.10(a). Now, draw VSWR circle, with center, O and radius equal to distance between P 
and O, O being center of the Chart. This circle cuts  1-∞  segment  of horizontal line of chart, and 
let it be Q. Identify the circle that passes through this point Q  and its r value  gives required 
VSWR.   



   
 Location of voltage maximum and minimum:  First of all, normalize the load impedance with 
Zo of the line and locate this impedance over the Chart at a point P(say). Draw a radial vector 
joining center of chart O with point  P. Next measure angles made by this vector, clockwise, with  
1-∞  segment  and  1-0 segment of horizontal line of the Chart, θ1 and θ2 as shown in Figure 
15.10(b). These angles when divided by  β give distance, in mts, of first maximum and first 
minimum  from the load.    

 Figure 15.12 SWR, location of first mximum and minimum. 
 

 RC over load: To find RC over the load, first normalize the load impedance with Zo of the line 
and let it be  r + jx . Now locate this impedance over the Smith chart at a point, let us say, at P. 
The distance of this point  P to center of chart O gives magnitude of RC. To find angle of 
coefficient, draw a radial vector, from O  to P and the angle made by this vector, clockwise, with 
1-0 segment of horizontal line of chart gives required angle, θ1 as shown in Figure 15.11(a).   
 

  Figure 15.13 RC and impedance computation. 
 RC at a distance from load: Let us suppose, RC is required at a distance of l from load.  First 
normalize the load and locate  the normalized load over the Smith chart, let us say at point, P. 
Now draw constant SWR circle passing through P and rotate the radial vector OP clockwise an 
angle, βl moving the load point to another location, Q on the circle.  
The distance of this point Q to center of chart O gives magnitude and  the angle, clockwise, made 
by radial vector, from O  to Q, with 1-∞ segment of horizontal line of chart gives angle of RC at 
a distance l from load, θ2 as shown in Figure 15.11(a).   
 Impedance  at a distance from load: Let us suppose, impedance required is at a distance of l 
from load.  First,  locate  the normalized load over the Smith chart, let us say at a point, P. Now 



draw constant SWR circle passing through P and rotate the radial vector OP clockwise an angle, 
βl moving the load point to another location, Q on the circle.  
Now, identify r and x values of  circles/arcs passing through point Q, which gives the normalized 
impedance over the line at a distance of l form load.  By multiplying normalized impedance with  
Zo of line then gives the required impedance in ohms. This process can also be used to identify 
the type of load at any point over the load. 
15.3.3. Single Stub Matching 
 The location and length of the stub to be placed over the line for matching purpose can be 
calculated using Smith chart. The procedural steps to be followed are given hereunder.  
 Plot the normalized impedance and draw the constant SWR circle on Smith chart. 
 Move a distance of λ/4 along the constant SWR circle to locate load admittance. Let it be P1.  
 On the SWR circle nearest to the load admittance point locate a point, which represents 
admittance 1±jb. This is the point of intersection of constant SWR circle and r =1 circle. Let it 
be P2. 
    Read the distance between P1 and P2 using the scale provided at the circumference of the 
chart. This gives the distance in wavelengths where the stub has to be placed from the load. 
 Starting from the point, (∞, j∞), find the distance of the point at which the susceptance is ±jb. 
This gives the length of the short-circuited stub in wavelengths to be connected for matching. 

15.3.4 Double-Stub Matching 
Single stub matching is impractical when the stub is not being able to be placed 

physically in the ideal location. Particularly, in case of coaxial lines, it is very difficult to place 
the stub at the exact required location. 

In double stub matching, the stubs are connected as near to load as possible and the 
lengths of the stubs are adjusted to get proper matching. For the sake of convenience, let us call 
the stub that is nearest to the load as near-stub and the other one as far-stub. The spacing between 
the stubs is usually either λ/8 or 3λ/8  or 5λ/8  but most often it is λ/4. The spacings of λ/2 is 
avoided, because it places the two stubs in parallel resulting in the availability of only single 
effective adjustment. The close spacing of the stubs is also avoided for the same reason. Now, 
the elements of double stub matching with Smith chart are briefly given. 

Spacing circle: It is a circle obtained by rotating the constant conductance circle g = 1 
around the center of the Smith chart. The amount of rotation depends upon the spacing of the 
stubs. For a spacing of either λ/8  or 5λ/8, the amount of rotation is 900 anti-clockwise and in 
case of 3λ/8, the rotation is  900 clockwise. If the spacing happens to be λ/4 then the amount of 
rotation is 1800. 

  To understand the significance of spacing circle, the line in between the stubs has to be 
viewed as a transformer, converting the admittances at far-stub location into different admittance 
values at near-stub location. The admittance of the line at far-stub location is 1±jb and, therefore, 
the constant conductance circle, g = 1describes these admittances. The admittances the location 
of near-stub then can be sketched over the Smith chart by moving the admittance points along 
constant SWR circles by angle corresponding the length of the transformer. If all the admittance 
points at the location of stub 2, are joined, it also results in the so called 'spacing circle'.    

Forbidden region:  The double stub matching technique does not work for certain values 
of load admittances. The region of the Smith chart that represents all these values of load 
admittances which are not amenable for this technique is called 'forbidden region'. The region 
basically depends upon the spacing of the stubs. When the first stub is right over the load, and for 
a stub spacing of either λ/8  or 3λ/8  or 5λ/8  the forbidden region consists of the entire area 



encircled by constant conductance g = 2 circle. If it is equal to λ/4, then the forbidden region is 
the entire area encircled by constant conductance g = 1 circle. 

Location of stubs: For reflection-less operation of line, the input admittance of line 
looking towards the load at far-stub location shall equal to the characteristic impedance. Or at the 
location of the far-stub the real part of the admittance of the line is required to be one. The far-
stub is used to cancel the imaginary part of the line admittance at its location resulting in 
normalized admittance of one.  

It is always desirable for the near-stub to be connected at or near to the load. But it is not 
always possible to have such a connection because of the existence of forbidden regions.  

Functioning: Stub 1 transforms the input admittance of the line and load to the right of 
its location into an admittance which lies over the spacing circle. The line transformer further 
transforms this admittance into a value which lies over unity conductance circle. The susceptance 
of the line at this point is tuned out using stub 2. 
Procedural steps:  
Step I:  Locate  the normalized admittance over the chart. Let it be P.  
Step II: From P move clockwise over constant SWR circle, a distance corresponding distance of 
the first stub from the load. Let the point be Q. If the first stub is to be placed right over the load, 
then this step becomes redundant. 
Step III: From Q move over constant g circle until spacing circle is met. Let the point be R. In 
case of two possibilities i.e. clockwise and anti-clockwise either one can be selected. From the 
susceptance value of the point R, the length of the first stub can be calculated. 
Step IV: From R move over constant SWR circle until g = 1 circle is met. Let it be S. From the 
susceptance value of the point S, the length of the second stub can be calculated. Note that the 
SWR circle in the present step is different from that of step II.  
------------------------------------------------------------------------------------------------------------- 
Example 15.20: Using the Smith chart, determine VSWR ρ, the location of the first Vmax and 
first Vmin from the load, when the line is connected to a normalized impedance, equal to  (2+j2)Ω and functioning at an operating wavelength of 6cm.  
Solution:  

 Figure 15.14 Illustrating Smith chart operations pertaining to Example 15.20. (13.9) 
The solution procedure involves several steps which are explained here in a detailed manner, 
with reference to the Figure 15.14. 

 The normalized impedance is given. Locate this impedance on a Smith chart and let it be 
designated as point P.  



 With center of the chart as center and center to point P as radius, draw the constant SWR circle. 
 The constant SWR circle cuts the horizontal line of the chart at two points, one on left of the 

center Pl and the other on the right of the center Pr. The point on the right of the center gives the 
SWR over the line. From the chart, it is 4.4.  

 From point P  read the angular distance in clockwise direction over the SWR circle to Pl and Pr 
and convert them into linear distances.  The first one gives the distance of the first Vmin and the 
second one gives the first Vmax and from the load.  From the chart they are 0.293λ and 0.043λ 
respectively. 
Example 15.21: A 50 Ω transmission line is terminated over a load of impedance (100+j50)Ω. 
Using the Smith chart, determine (a)VSWR ρ,(b)RC,(c) distance of voltage minimum from the 
load, (d) line impedance at a distance of 0.15λ form the load(e) line admittance  at a distance of 
0.15λ form the load and (f) the location of the nearest point to the load where the real part of the 
line admittance is equal to the line characteristic admittance.  
Solution:  
The solution procedure involves several steps, which are explained here in a detailed manner, 
with reference to the Figure 15.15.  

 
Figure 15.15 Illustrating Smith chart operations pertaining to Example 15.21.(13.8)  
 

 The load impedance and characteristic impedances are given. The normalized load 
impedance is,  

100 50 2 1
50l

jz j
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 Locate the normalized impedance over Smith chart and with 1 as center and from 1 to the point 
representing the normalized impedance as radius, draw the constant SWR circle. The circle cuts 
the real or horizontal axis at two points. The value against the point right of the center is SWR. 
From the Smith chart operation, as shown in Figure 15.15(a), SWR is found equal to 2.32.  

 From the horizontal scale provided over the bottom of the chart, RC can be computed. As shown 
in Figure 15.15(b), it is 0.48. 

 The distance between the load point to the point of intersection of real axis and SWR circle on 
the left side of the center can be read using the scale provided over the periphery of the chart. 
The load point location is 0.212 and the voltage minimum point is 0.50. Therefore the distance of 
the first voltage minimum the load is 0.50–0.212=0.288 times wavelength. It is shown in Figure 
15.15(c) 

 The required line impedance can be found by moving a distance of 0.15λ over the SWR circle in 
clockwise direction. The point represents normalized impedance of  zd=(0.82–j0.7). The absolute 
impedance, shown in Figure 15.15(d), then is Zd=50×(0.82–j0.7)= (41–j35).   

 Locate the point over the SWR circle diametrically opposite to the point located in the previous 
step. It represents the required admittance. Its normalized value from the chart is yd=(0.6+j6.5). 
The absolute admittance, shown in Figure 15.15(e),  then is Yd=(0.6+j6.5)/50= (0.012+j0.13). 

 The distance of the nearest point to the load where the real part of the line admittance is equal to 
the line characteristic admittance can be found by locating the load admittance over the SWR 
circle and then finding the distance in clockwise between this point and the point of intersection 
of SWR circle with g=1 circle. From the chart the load admittance point is 0.462 and the 
intersection point is 0.16. the distance between them then can be found to be 0.198 times 
wavelength. It is shown in Figure 15.15(f) 
Example 15.22: Using the Smith chart, find the terminated impedance of a line of characteristic 
impedance of, Zo =50Ω having an SWR=3. When the load is shorted, the shift in minima is 0.2λ 
towards the generator.  
Solution: 
The solution procedure involves several steps which are described below, with reference to the 
Figure 15.16.  

 Figure 15.16 Illustrating Smith chart operations pertaining to Example 15.22. (13.10) 
 

 Take a Smith chart and with center of the chart as center and center to 3 over the horizontal axis 
as radius draw the constant SWR circle. 

 The constant SWR circle cuts the horizontal line of the chart at two points, one on left of the 
center Pl and the other on the right of the center Pr.  



 The point Pl corresponds to Vmin , and now move over the SWR circle from Pl a distance 
corresponding to 0.2  towards the generator and locate the load point. It gives the normalized 
impedance and from the chart its value is zl=(1.7+j1.3). Multiplication with Zo =50Ω   gives the  
actual value of the impedance. It is Zl=50×(1.7+j1.3)= (85+j65). 
 
Example 15.23: Using the Smith chart, find the location and length of the short circuited stub 
required for a line of Zo =50Ω when the normalized  load admittance is (2+j1.75)℧. The 
characteristic impedance of stub is 100Ω. .  
Solution: 
The solution procedure is a multi-step process, described below with respect to the Figure 15.17. 

Figure 15.17 Illustrating Smith chart operations for single stub matching pertaining                           
to Example 15.23. (13.11) 

 
 The normalized admittance is given. Locate the normalized admittance on the Smith chart 
and then draw the constant SWR circle. 
 On the SWR circle nearest to the load admittance point locate a point, in clockwise direction, 
which represents admittance 1± jb. This is the point of intersection of constant SWR circle and  
g=1circle. For the given data, from the  Smith chart it is (1– j1.45)  
    Read the distance between the points identified in the previous steps using the scale provided 
at the circumference of the chart. This gives the distance in wavelengths where the stub has to be 
placed from the load. From the chart it is  0.325–0.208=0.117 times wavelength 
 Starting from the point (∞, j∞), find the distance of the point at which the susceptance is 
j1.45. This gives the length of the short-circuited stub in wavelengths to be connected for 
matching. From the chart it is  0.404λ. 
Example 15.24: In a double stub matching scheme, the terminating impedance, Zl is (100–
j100)Ω and the characteristic impedances, Zo of the line and the stub, both are equal to 50Ω. The 
first stub is placed at 0.05λ away from the load. The spacing between the two stubs is (3/8)λ. 
Determine the length of the short-circuited stubs, when the match is achieved.  
Solution:  
The solution procedure involves several step which are described  below, with reference to the 
Figure 15.18. 



 From the given values of the load impedance and characteristic impedance, find the normalized 
impedance. And then locate the normalized admittance over the chart. From the Smith chart, the 
normalized admittance is (0.24+j0.25).  

 From the point located in the first step, move clockwise over constant SWR circle, a distance 
corresponding distance of the first stub from the load. It is 0.05λ in the given Example. The 
admittance of the point reached, from the Smith chart, is (0.32+j0.6).  

 Draw the spacing circle of (3/8)λ by rotating the constant-conductance unity circle (g=1) through 
a phase angle of 2βd= 2β(3/8)λ=(3/2)π toward the load. 

 From the point located in the previous step move over constant g  circle until spacing circle is 
met. Now, two points are encountered, meeting this condition. These two points in general give 
two different sets of lengths of the stubs. Here, only one point i.e. (0.32–j0.25) is considered and 
solution lengths are found. The solution is similar when the other point is selected.  

 The difference in the susceptance values of previous two points has to be nullified by the first 
stub. Here it is –j0.25–j0.65=–j0.85. The stub susceptance has to be j0.85. From the chart the 
corresponding length of the first stub can be calculated. It is 0.14λ. 

 
Figure 15.18 Illustrating Smith chart operations for double stub matching pertaining to  

Example 15.24.(13.12) 
 From the point located in the previous step i.e. (0.32–j0.25) move over constant SWR circle and 

in clockwise direction until its corresponding point over (g=1)circle is met. From the susceptance 
value of this point, which is j1.25, the length of the second stub can be calculated. It is from the 
Smith chart 0.395λ. Note that the SWR circle in the present step is different from that of second 
step.  
--------------------------------------------------------------------------------------------------------------------- 
 



 

UNIT-III 

TRANSMISSION LINE AT HIGHER FREQUENCIES 
Assignment-Cum-Tutorial Questions 

SECTION-A 

1. The Smith chart can be characterized as      [ ]      

  a) A Polar plot  b) represents complex RC 

  c) Inscribed in a unity circle  d) all 

2. The complete circles and arcs in the Smith chart, respectively, represent [ ]     

a) Normalized resistance/conductance, Normalized reactance/ susceptance 

 b)Normalized reactance/ susceptance,  Normalized resistance/conductance 

 c) Normalized reactance, susceptance  

d) none of these   

3. The circles and arcs over the Smith chart are         [ ]    

  a)  Orthogonal   b) Opposite to each other   

  c) At 450   d) None of these   

4. The upper half and lower half of the Smith chart, respectively, represent  [ ]        

a)  Positive, nagative reactance/susceptances  

b) Capacitive, inductive reactance/susceptances   

c) Resistance, conductance     d) None of these   

5. The radius of the constant SWR circle  is equal to     [ ]  

a) Voltage SWR   b) Current SWR  

c)  Both (a) and (b)         d) None of these   

6. The centre of the constant SWR circle  falls over       [ ]    

a) ‘1’of horizontal line b) centre of the chart  

c) Both (a) and (b)     d) None of these   

7. In the left-half and right-half of the chart, resistance and reactance values, respectively, are  

           [ ] 

        a) More than 1, less than 1  b) Less than 1, more than 1 

 c) 1,1      d) 0,0      

8. The left most and rigtht most points of the chart, respectively, represent  [ ]  

 a) (0,0), (∞,∞)   b) (∞,∞),(0,0),    

 c) (0,0), (1,1)      d) (1,1),(∞,∞)  

9. The top most and bottom most points of the chart, respectively, represent  [ ] 

     

a)  (1,1), (‒1,‒1)     b) (‒1,‒1), (1,1)      

 c) (1,1), (0,0)       d) None of these   

10. Smith chart is always used with       [ ] 

 a) Normalized impedances     b) Normalized admittances 

c) Both (a) and (b)    d) None of these   

11. The Smith chart is useful to analyze      [ ]     

a) Loss-less lines   b) lossy-lines 

c) Both (a) and (b)    d) None of these   

12. The horizontal line left and rigth of the centre, respectively, represent   [ ]      

a) Vmax, Imax; Vmin, Imin 
    b) Vmin, Imax; Vmax, Imin 

 

c) Vmin, Imin; Vmax, Imax    d) None of these   



13. The movement towards load  and towards source over the line, respectively, correspond to, 

            [ ] 

a) Clock-wise, anticlock-wise rotation over the Smith chart  

 b) Anti-clockwise, clock-wise rotation over the Smith chart   

c) Upwards, downwards     d) None of these   

14. Travel of length  λg/2  over the line corresponds a rotation of     [ ] 

a)  over the chart   b)  over the chart 

c)  over the chart   c) None of these   

15. On the smith chart, full circles represents_________              [ ] 

A) Inductance  B) Capacitance C) Resistance  D) Impedance 

16. The radius of the constant SWR circle is equal to __________   [ ] 

A) Reflection coefficient   B) Transmission coefficient   

     C) SWR     D) Normalized impedance 

17. The centre of constant SWR circle falls over ________   [ ] 

A) Centre of the chart B) ‘1’ of horizontal line  

 C) both A and B D) None of these 

18. The left most points of the smith chart represents__________   [ ] 

A) Generator B) Load C) Short circuit impedance D) Open circuit impedance 

19. Equation representing circles is ---------- and that representing arcs of the chart is ---------- 

20. Double stub matching is not possible when the load falls in----------------------------region. 

21. Over the Smith chart, full circles represent----- -----------and arcs represent------------------ 

22. Over the Smith chart, the upper half is----------------and lower half is------------------------- 

23. Smith chart uses only--------------- and describe the line for ------------------------------------  

24. The centre of constant SWR circle is always the----------------------------------- of the chart. 

25. Vmax, Imin and ρ correspond to--------------------------- half the chart and Imax, Vmin and 1/ρ 

correspond to------------------------------- half the chart. 

26. In single stub matching, length of stub is -------------- and location of stub is ---------------- 

27. Define stub. 

28. A stub can be shorted at one end.                                     (yes/no) 

29. If the VSWR=2, the magnitude of the reflection coefficient is  [ ] 

a) ¼  b) 1/5  c) 0  d) 1/3 

SECTION-B 

Descriptive questions 

1. Explain construction of Smith chart. [C03] 

2. Describe about the UHF lines at higher frequencies act as circuit elements. [C02] 

3. Describe the method of single stub matching. Derive the relation for the length and 

location of the stub. [C02] 

4. What is mean by load matching? Explain Quarter wave transform technique. [C02] 
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5. Define matched line. What are the advantages of transmission over matched line? 

Explain why a matched line does not carry reflected wave. [C03] 

6. Explain the double stub matching. [C02] 

7. Locate voltage max and min for pure resistive termination for a lossless transmission line. 

[C02] 

8. Describe the procedure of load matching with quarter wave transformer for different 

types of loads. [C02] 

9. Describe Smith chart and its salient features. [C03] 

 

Problems 

 

1. A loss-less transmission line with Z0=100 Ω is 0.434 λ long and terminated at an 

impedance of 260+j180. Find (a) VSWR (b) Reflection Coefficient (c) Input 

impedance  (d) Location of voltage maximum on the line. By using smith chart. 

Assume the line is placed in free space. [C03] 

 

2.  A load of 100+j150 Ω is connected to a 75 Ω (Z0) lossless line. Find (a) VSWR (b) 

Reflection Coefficient (c) Input impedance at 0.4 λ from the load (d) the load 

admittance (e) Location of Vmax and Vmin with respect to the load if the line 0.4 λ long . 

[C03]   

 

3. A lossless line of 300 Ω impedance is terminated with a load impedance of 100+j150 Ω. 

The frequency of operation is 60 MHz find the location of a single stub needed for 

impedance matching. [C03] 

 

4. A load such as an antenna of impedance ZL= 50-j100 Ω is connected to a lossless 

transmission  line with characteristic impedance Z0= 100 Ω. The line operates at 300 MHz 

and the speed of propagation on the line is 0.8*c. Find: 

i. The reflection coefficient at the  load 

ii. The reflection coefficient at a distance of 20 m from load towards the generator 

iii. Input impedance at 20 m from the load 

iv. The standing wave ration on the line 

v. Locations of the first voltage maxima and the first voltage minima from the 

load.[C03] 

 

SECTION-C 

1. For pure reactance and pure resistance loads, load points over the Smith chart, respectively, 

stay at,          [ ] 

a) At the periphery, over the horizontal line  b) Over the horizontal line, At the periphery 

c) In the lower half, At the periphery  d) In the upper half, over the horizontal line 

 

2. For a match terminated loss-less line, the location of load point over the Smith chart is 

[ ] 



a) At centre b) At periphery c) In the upper half  d) In the lower half   

 



Transmission lines and Waveguides(UNIT IV) 
 

A. Questions testing the remembrance/understanding level of students 
I. Objective/Multiple choice questions 
1. The cut-off frequency of wave in between parallel plane conductors is ------   
2. The cut-off wavelength of wave in between parallel plane conductors is ------   
3. The phase shift constant for wave in between parallel plane conductors is ------   
4. The phase shift constant for wave in between parallel plane conductors at cut-off is ------   
5. The phase shift constant for wave in between parallel plane conductors at high frequencies  
is ------   
 
6. Transmissions lines carry waves in------ mode where as waveguides carry in------ TEM 
mode. 
7. Pure real value of propagation constant indicates------ attenuation and------  wave motion. 
8. Pure imaginary value of propagation constant indicates------ attenuation and------  wave 
motion. 
9. In TE wave the electric vector is------ transverse to the direction of propagation of wave.  
10. In TE wave the magnetic vector has------  component along the direction of propagation of 
wave. 
11. In TM wave the magnetic vector is entirely------ to the direction of propagation of wave.  
12. In TM wave the electric vector has a------ along the direction of propagation of wave. 
13. In TEM wave both the electric and magnetic vectors are entirely------ the direction of 
propagation of wave.  
14. In mixed or hybrid wave, both the electric and the magnetic vector have components------ 
the direction of propagation of wave. 
 
II. Descriptive questions 
1. What is TE wave. 
2. What is mode of wave.  
3. What is principal wave. 
4. Write cutoff frequency of wave in parallel plate transmission. 
 
B. Questions testing the ability of students in applying the concepts 
I. Multiple choice questions 
1. Wave in guide travels through             
(a) Guide walls    (b) dielectric   
(c) Both (a)and (b)     (d) None  
2. The propagation constant pure real implies            
(a) Wave without attenuation  (b) No wave motion  
(c) Wave with attenuation  (d) None  
3. The propagation constant pure imaginary implies           
(a) Wave without attenuation  (b) No wave motion  
(c) Wave with attenuation  (d) None  
4. The propagation constant complex implies           
(a) Wave without attenuation  (b) No wave motion  
(c) Wave with attenuation  (d) None  



5. In TM wave, H can have component         
  a) Parallel to propagation   b) Normal to propagation    
  c) Both (a) and (b)        d) None of these 
6. In TE wave, H can have component         
  a) Parallel to propagation   b) Normal to propagation    
  c) Both (a) and (b)        d) None of these 
7. The lowest order TE wave in between parallel conducting plates is            
(a) 10TE     (b) Principal wave.  
(c) Both(a) and (b).    (d) None  
8. The principal wave is            
(a) 00TM   (b) TEM wave  
(c) Both(a) and (b).  (d) None  
9. The nature of the wave normal to plates is             
(a) Pure standing   (b) Pure traveling 
(c)  Impure traveling   (d) None  
10. The nature of the wave parallel to plates is             
(a) Pure standing   (b) Pure traveling 
(c)  Impure traveling   (d) None  
 
II. Problems 
1. A parallel plate waveguide is having a dielectric medium with εr =2.25  and μr =1. 
Determine its spacing a when its dominant mode cutoff frequency is 5GHz.     
 Answers:    2cm   
2. A parallel plate waveguide of spacing a= 4cm, is having a dielectric medium with εr =4  and 
μr =1. Determine the TE modes that can propagate when the frequency is 5GHz.  Also find fc  
and λg for each propagating mode. 
 Answers:  m=1,2, fc = 1.875,3.75GHz, λg =3.24,4.53cm   
3. A parallel plate waveguide of spacing a= 5cm, is having free space medium in between. If it 
is excited with fundamental 2GHz and its harmonics, determine all the frequencies that 
propagate in TE10 mode.  
 Answers:  4, 6, 8GHz……etc. 
4. In an air-dielectric parallel-plate waveguide of spacing a= 5cm, TE modes are excited with a 
field distribution at its mouth given by,  

  9ˆ15 sin 20 0.35sin 60 sin10 V/mx x t    E y  
5. Determine the propagating modes and deduce the expression for electric field of the 
propagating wave.   

 
 9

10 ˆ: TE ; 15 sin 20 sin 10 80 3 V/mx t z      E yAnswers    
6. A 4GHz wave is propagating in a nonmagnetic medium having  a dielectric constant, εr 
=2.2. When the phase shift constant is found as 540 /cm, find the cutoff wave number. 
            Answers: 0.81rad/cm    
 
C. Questions testing the Analyzing/evaluating/creative abilities of student 
1. Prove that the infinite parallel plane conductors act as high pass filter. Define the terms  
cutoff frequency and cutoff wavelength. 
2. What is the meaning of mode of the wave? Give a complete description of modal  



propagation characteristics of waves in between infinite parallel plane conductors.   
3. Define and differentiate phase velocity from group velocity. 
4. What are two types of attenuations that exist in waveguides? Write down general  
expressions for both the types of attenuation. 
 D. Previous GATE/IES questions 

1. Attenuation constant in Np/m due to conductor loss is             

a)
 

power dissipated/unit length
2×power flow down the guide   

b) 2×power flow down the guide
power dissipated/unit length  

c) power dissipated/unit length
power flow down the guide  

c) None of these
  

2. Reflective attenuation comes into being when the frequency of the wave is   
                  
a) Less than cut off frequency  b) More than cut off frequency  
c) Both (a) and (b)   d) None of these  
 
 
  



GUIDED WAVE ANALYSIS  
Here, the field distribution in the region between two infinitely large parallel conducting 

plates, in the presence of traveling wave, is investigated. This topic is important for more than 
one reason. Parallel wire transmission lines, waveguides, and also coaxial lines are similar to 
parallel plate systems, having certain common structural features and, in fact, all the above 
mentioned electrical transmission systems can be derived from the parallel plate structure under 
consideration.  

This plate system is capable of supporting both TEM and non-TEM waves. When the 
features that support TEM waves are accentuated, the structure becomes a parallel wire 
transmission line and when features that sustain non-TEM wave features are enhanced, it results 
in waveguides. Hence, analysis of wave guided by parallel plates give an indication of 
characteristics of TEM and non-TEM waves, apart being a necessary prerequisite know-how for 
the analysis of parallel wire transmission lines and waveguides. The methodology used, concepts 
applied and results obtained from the analysis of this configuration can be used for benefit in the 
study of, both, TEM wave carrying transmission lines as well as non-TEM wave carrying 
waveguides.  
12.1.1. Fields in between conducting plates 
  In this section, the relations connecting transverse components with longitudinal ones are 
derived. Let us suppose the two conducting plates, infinite in extant, are parallel and  one lying 
exactly over the yz- plane  and another at a height of  a from the bottom plate as shown in Figure 
12.2. Let us also suppose that there exists a wave, traveling in the positive z- direction in between 
the plates. It is assumed that the plates are made with perfect conductors i.e. conductivity σ of the 
walls is ∞ and it is also assumed that hollow region is a perfect dielectric i.e. its conductivity, σ is 
zero.  

 
Figure 12.2 Parallel infinite conducting plates with traveling wave.(10.1 shaded) 
The analysis is done in phasor domain i.e. time variations of the field quantities are 

assumed exponential i.e. ejωt . When the time variations are exponential, the fields also vary in 
exponentially along the direction of the propagation, according to transmission line theory. So 
the fields must vary with z as ݁ఊഥ௭  where ̅ߛ is a constant, known as the propagation constant 
which, in general, is a complex quantity, given by,  ̅ߙ = ߛത +j̅ߚ. 

Its real part, ߙത  attenuation constant, represents the attenuation the wave undergoes while 
traveling and the imaginary part, ̅ߚ, phase shift constant, denotes phase change in wave motion. 
In the ensuing analysis, loss free conditions are assumed and hence, it is un-attenuated wave 



transmission with a pure imaginary propagation constant, i.e. ̅ߛ =j̅ߚ. The 'bar' over the symbols 
indicate that they refer to non-TEM waves. 

In general, the fields are function of x , y, z and t.  In the present case, however, the plates 
are infinite in extant in y–direction. As there is no wave motion in that direction, the fields must 
be constant in the direction, and hence, independent of that dimension.  
   If E and H are electric and magnetic fields at an arbitrary point, P in the hollow region, 
they must be related through the Maxwell's curl equations, given by:  

j j       H E ;                    E H   (12.1) 
In the analysis, it is aimed to find the fields E and H,  which are vectors having all the three 
components. The expressions for all the six components, Ex , Ey , Ez , Hx , Hy  and Hz of the fields 
are found, first by expressing the transverse components, Ex , Ey , Hx and Hy    in terms of the 
longitudinal ones, Ez  and Hz . Then the longitudinal components are found by solving their 
respective wave equations. The longitudinal fields, when expressed in terms of the transverse 
ones, appear as follows: 
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x y

H EjH H
h x h x
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 (12.2a)  
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    (12.2b) 

with  
  2 2 2h           (12.3) 
Note that the relation in Eq. (12.3) is called characteristic equation. The constant, h also denoted 
by kc , is called cut-off wave number.  In the above relations, note that, all the field quantities are 
functions of  x only.  
Proof:  The fields E and H, at point P obey Maxwell's curl equations. In phasor form equations, 
the fields are independent of time, t.   If the z-variations of the field quantities are exponential, 
then, one can replace ∂/∂z by – ̅ߛ. In addition, as there is no wave motion in y-direction, fields 
must be uniform, resulting in ∂/∂y=0. Expanding the first one of  Eqs. (12.1) after considering 
these two aspects, results in, 
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Equating field components on both sides of Eq.(12.4), one can obtain, 

; ; yz
y x x y z
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 (12.5) 

Similarly, by following same procedure, from the second one of the Eqs. (12.1), another set of 
three equations can be derived:  

; ; yz
y x x y z

EEE j H E j H j H
x x
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

     
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 (12.6) 

 After combining  second of Eqs.(12.5) and first one of Eqs. (12.6)   and then solving 
them for Hx  results in an expression which is first one in Eq.(12.2a). In a similar manner, 
expressions for other transverse components can be computed by considering one equation from 
each set i.e., Eqs.(12.5) and (12.6).   



Several critical observations can be made with respect to relations in Eqs.(12.3), which 
are listed below.  

One: With Ez = 0, Hz = 0, simultaneously, all the field components become zero 
indicating that a wave with components entirely transverse to the direction of propagation i.e. 
transverse electromagnetic wave, or   TEM wave cannot exist in between the plates.  

Two: With Ez ≠ 0, Hz = 0, all the components are not zero indicating the possibility of  
the existence of a wave with its magnetic vector entirely normal to the propagation direction. 
This type of wave is called  E-wave or transverse magnetic or TM wave.  

Three: With Ez = 0, Hz ≠ 0, there exist non-zero field components indicating possibility 
of a wave with its electric vector entirely normal to the propagation direction. This type of wave 
is called  H-wave or transverse electric or TE wave.  

Four:  With Ez ≠ 0 , Hz ≠ 0,the wave can exist in the guide, as all  the field components 
are not zero. This type of wave is called hybrid or mixed wave.  

The next step of the solution procedure involves, finding the fields, Ez and Hz , by solving 
the wave equations. They are partial differential equations, and their solution requires boundary 
conditions. As the tangential components of the electric field at the surface of a perfect conductor 
are zeros, and as the inner faces  of  the plates, which are assumed to be perfect conductors,  are 
located at  x = 0 and at  x = a , the fields there must be zero i.e. Ey = 0 = Ez  at x = 0 and at  x = a . 
These are the required boundary conditions and are highly useful in obtaining the expressions for 
the field components by solving the wave equations. 
12.1.2. TM waves  
The TM waves, as already mentioned, are characterized by the absence of magnetic field and the 
presence of electric field along the direction of wave propagation. It implies that the H vector is 
entirely transverse (synonym for perpendicular) to the direction of the wave travel i.e., thus,   Hz 
=0 for a wave traveling in z-direction. When it comes to E vector, it exists along as well as 
normal to the direction of wave propagation. Now, to obtain an expression for Ez, the  wave 
equation is solved, which is given by  

       
(12.7) 

If the time-variations and z-variations, both, are exponential, then the expression for Ez  becomes  

      (12.8) 
After substitution of Eq. (12.8) in Eq. (12.7), and then some manipulation leads to   
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(12.9) 

The wave travel is entirely confined to z-direction. As a consequence, the fields cannot have any 
variations along the y-direction, and hence, ∂/∂y  =0. Incorporating this into Eq. (12.9), one can 
obtain that, 

 
       (12.10)

 
Using h2 =  ̅2ߛ + ω2με , Eq.(12.10) can be recast as,  

       
 (12.11) 
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Figure 12.3 Fields between parallel planes for TM10 mode 

 
The general solution to the above second order partial differential equation is,  

 cos sin z
zE A hx B hx e        (12.12) 

where A and B are arbitrary constants whose values can be fixed using the boundary conditions, , 
Ez= 0 at x = 0  and at x = a, it can be obtained that  

A =0 and h = mπ /a ,   m = 0,1,2…   (12.13) 
After substituting the obtained values for arbitrary constants, the expression for the field 
becomes,  
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Here, B is an arbitrary constant and for mathematical convenience, its value is chosen as, 
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The Co is another arbitrary constant. With the availability of expression for Ez , the other field 
components can be computed using Eqs.(12.2).  After including the exponential time variations 
and z-variations, the complete set of the field components between the parallel plates, for TM 
wave, become  
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     (12.15b) 

The expressions for fields of TM wave, available above, are illustrated in Figure 12.3, using flux 
lines for m =1 i.e., TM10 mode. 
 
12.1.3 TE waves  
The TE waves are characterized by the absence of electric field and the presence of magnetic 
field along the direction of propagation of the wave. It implies that the E vector is entirely 
transverse to the direction of the wave travel. When it comes to H vector, it exists along as well 
as normal to the direction of wave propagation. In the present case, Ez = 0 and as the boundary 
conditions are not available on Hz, the component  Ey, for which boundary conditions are 
available, is considered for obtaining the solution. The wave equation for Ey is given by,  
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By following a procedure similar to that used in the previous section, one can arrive at   
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Figure 12.4  Fields between parallel planes for TE10 mode 
 
The general solution of this equation is same as that for wave equation solved in the previous 
section. Using boundary conditions, Ey = 0 at x = 0 and x = a, one can get the particular or 
specific solution from the general one. The resultant specific solution then is  
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Figure 12.5 Illustrating wave propagation between parallel plates. 
With the availability of expression for Ey, using second one of Eqs.(12.2b),  Hz  

computed.  From, Ez and  Hz  other components can be computed using the relations available in 
Eqs. (12.2), connecting transverse components to longitudinal ones. After including the 
exponential time variations and z-variations, the complete set of the field components for TE 
wave between the parallel plates become   
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The flux line representation of fields of TE wave are shown in Figure 12.4, for  m =1 i.e. TE10 
mode. Until now, several aspects of propagation between plates are examined, and its behavior 
in between the parallel plates is illustrated in Figure 12.5. Note that the propagation is not 



through the metal of conductor plates: the wave actually passes through the hollow region in 
between the plates. The role of plates is merely to confine the wave to hollow region.  
FILTER CHARACTERISTICS  

Infinite parallel plate arrangement and waveguide systems, both, behave like high-pass 
filters. They admit and allow the wave to propagate through them only if the frequency of the 
wave is more than certain value known as cut-off frequency. Its value depends upon plate 
spacing/ guide dimensions, mode of wave and also the properties of the medium between 
plates/guide hollow region. Now, the terms, the cut-off frequency and its corresponding 
wavelength, called cut-off wavelength, phase shift constant and guide wavelength etc, which 
essentially describe the filtering nature of the guide system and waveguides are defined and 
explained in detail.  
Cut-off frequency, fc: It is the frequency above which frequency of the wave should be in order 
to get entry into the parallel plate system/waveguides for propagating further through them. Its 
value depends upon plates spacing/guide dimensions and on the wave mode.  
Parallel plate guide: The cutoff frequency for parallel plate guide can be found as,  

2c
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a 
      (12.38)      

Cut-off wavelength, λc: Wavelength corresponding to cut-off frequency is called cut-off 
wavelength. It can be defined as wavelength below which wavelength of the wave should be in 
order to exist with in parallel plate system/waveguides for propagating further through them.  
Its value, like the cutoff frequency, is related to plate spacing/ guide dimensions and mode 
numbers of the wave through it. However, unlike the cutoff frequency, it is independent of  the 
constituent constants of the medium between the plates/hollow region. 
Parallel plate guide: The cutoff wavelength for parallel plate guide can be found as,  
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Phase-shift constant,̅ߚ: The phase-shift constant, which indicates the phase change per unit 
distance, in the wave along the direction of propagation, is given by  
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     (12.45) 

In general, travelling waves are associated with change in phase and they undergo a phase 
change of 2π rad by the time they travel a distance equal to the wavelength, λ m. Therefore, 
phase change per unit distance or meter, which is phase shift constant, β becomes  2π /λ . 
Guide wavelength, ̅ߣ : The guide wavelength, indicated by ̅ߣ or λg is  wavelength along 
propagation direction and is by definition the distance between two consecutive points which 
differ in phase by 2π radians measured along the direction of  wave propagation.   
Both for parallel plate guide system and waveguides, it is given by,  
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Here, it is assumed that region between plates/hollow region of guide is filled with a dielectric, 
having constitutive constants, εr and μr. From the expressions, Eq.(12.46), it can be observed that 
the guide wavelength varies with frequency. This dependence can be described as:  



 Above cutoff, with increase in frequency of the wave, guide wavelength decreases and 
with decrease in frequency, guide wavelength increases. Just near cut-off frequencies, it 
assumes highest possible values. 
 At cutoff, the guide wavelength is infinity and below cutoff, it assumes complex values 
indicating non-existence of traveling wave in the guide.  

When region between parallel plates/guide's hollow region is free space, then the guide 
wavelength becomes, 
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It can be noticed that the first one is entirely in terms of wavelengths and the second one involves 
both frequencies as well as wavelength. These two are considered as standard expression for 
guide wavelength in an air-filled waveguides. The guide wavelength can also be framed in a 
more popular form, connecting all the three wavelengths as shown below: 
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Proof :  Now, the derivation of  relations for cut-off frequency and cut-off wavelength is 
undertaken. It is already known that the propagation constant  ̅ߛ can be related to the frequency, 
ω, of the wave, according to Eq. (12.3), as  ̅2ߛ= h2– ω2με   or  

     (12.49)  
From the above relation, Eq.(12.49), it can be noticed that, depending upon the relative values of 
h2 and ω2με, the propagation constant ̅ߛ can be pure real or imaginary.  When h2> ω2με  he 
propagation constant is pure real quantity,  indicating that the waveguide is acting as a pure 
attenuator, without allowing wave motion, refusing entry to the wave. However, when h2 < ω2με, 
the propagation constant is pure imaginary quantity, indicating that the waveguide is acting as a 
pure transmission line, without any attenuation to the wave. This must be the case to which the 
guiding system under consideration belongs, since  it is given that the wave is already inside the 
guide and loss-less conditions are assumed prevailing, i.e., plates are assumed to be perfect 
conductors and region in between them is considered as perfect dielectric. 

The change over in the behavior of the guiding system from pure attenuator to pure 
transmission line takes place as the frequency is increased from lower  to higher values, when 
h2=ω2με . The frequency of the wave corresponding to this relation is called cut-off frequency, 
ωc=(2πfc). Hence, at cut-off frequency,  

     (12.50)    
Combining h available in  Eq.(12.13) with Eq.(12.50) results  cut-off frequency for parallel plate 
guiding system, given in Eq.(12.38). Using h value available in  Eq.(12.24) with Eq.(12.50) 
results  cut-off frequency for rectangular waveguide, given in Eq.(12.39). And substituting h 
value available in  Eqs.(12.32)and (12.37) with Eq.(12.50) results  cut-off frequency for circular 
waveguides, given in Eqs.(12.40). 
  The corresponding wavelengths, cut-off wave lengths can be found using λc= v/fc . Note that the 
expressions for cut-off frequency fc  and cut-off wavelength λc  are same for both the types of  
waves i.e. TE and TM waves, in parallel plate guide and rectangular guides. However, for 
circular guides, TE and TM waves have different values. Another point worth mentioning here is, 
that the product of cut-off frequency and cut-off wavelength is equal to v (=fc λc= 1/√με )  but not 
to c(= f λ = 1/√μoεo). 
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Next, the derivations pertaining to phase shift constant and guide wavelength are 
considered. In the present case, it is given that the wave is under loss-less conditions and it is 
already inside, so the propagation constant ̅ߛ must be pure imaginary i.e. 

      (12.51) 
The phase shift constant, therefore, becomes  

2 2h           (12.52)  
Using h values available in  Eqs. (12.13), (12.24), (12.32)and (12.37) the phase shift constants 
for parallel plate guide, rectangular guide and circular guides can be found from Eq.(12.52).  
From the basic definition of wavelength and phase shift constants, wavelength ߣത can be 
expressed as  ߣത =2π/ߚത. Substituting the available expressions for ߚത  in this basic relation, the 
expressions for guide wavelength can be easily found.  
----------------------------------------------------------------------------------------------------------------- 
Example 12.3 : Two parallel plane  infinite conducting plates are separated by 2cm. Find the 
cut-off frequencies for m =1 and 2 when values of permeability and permittivity are (a)   μ=μo , 
ε=εo and(b) μ=μo , ε=4εo.  
Solution:  
(a) Permeability and permittivity are,  μ=μo , ε=εo. 
The cut-off frequency is, 
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This value is for m=1 and similarly, for m =2, it can be found that fc = 1.5×1010Hz 
 

 (b) Permeability and permittivity are,  μ=μo , ε=4εo.  
The cut-off frequency is, 
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 for m =1
  

This value is for m=1 and similarly, for m =2, it can be found that fc = 0.75×1010Hz 
Example 12.4: Two parallel plane  infinite conducting plates are separated by 4cm. Find the cut-
off wavelengths for m =1 and 2 when values of permeability and permittivity (a)   μ=μo , ε=εo 
and(b) μ=μo , ε=4εo.  
Solution:  
(a) Permeability and permittivity are μ=μo , ε=εo  
The cut-off wavelength, is    
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This value is for m=1 and similarly, for m =2, it can be found that λc = 4cm. As the  cut-off 
wavelength is independent of  medium properties, previous results are valid even for  (b) μ=μo , 
ε=4εo.  
Example 12.5: Two parallel plane infinite conducting plates are separated by 4cm. Assuming  
frequency of the wave as 9.0GHz, find the wavelength along the propagation direction, for m =1  
and 2 when values of permeability and permittivity are (a)   μ=μo , ε=εo and(b) μ=μo , ε=4εo.. 
Solution:  
(a) For the given values of μ=μo , ε=εo and f=9.0GHz, it can be found that, 
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The wavelength along the propagation direction then becomes,    
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This value is for m=1 and similarly, for m =2, it can be found that ̅6.03 = ߣcm. 

 

(b) For the given values of μ=μo , ε=4εo and f=9.0GHz, it can be found that, 
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The wavelength along the propagation direction then becomes,    
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This value is for m=1 and similarly, for m =2, it can be found that ̅2.91 = ߣcm. 

 

--------------------------------------------------------------------------------------------------------------------- 
12.4 MODAL PROPAGATION   
The electromagnetic energy propagation in between parallel plates, and along the waveguide is 
in the form of certain definite field patterns, known as 'modes'. This is an important and special 
feature of the energy propagation in guided waves and waveguides. These field patterns or 
modes are described by mentioning the transverse nature of wave i.e. TE or TM along with two 
subscript numbers, m and n. 

Parallel plate guide:  The guided wave propagation is in the form of modes, as is 
evident from Figures 12.2 and 12.3. These modes are distinguished with type of mode, that is TE 
or TM, and with mode numbers as subscripts, denoted with m and 0 in that order. Transverse 
electric modes are denoted as TEm0  whereas transverse magnetic modes by TMm0. Certain points 
worth mentioning regarding modal propagation are given below:  
 Subscripts: For TE wave,  m can assume any integer value, from 1 onwards. For TM wave, 
however, m can assume any integer value from 0 onwards. Actually, the subscripts for modes are  
m and n and they are supposed to indicate the no. of half wavelengths along transverse directions 
normal to direction of propagation. In the present case, as there is no wave motion in one of the 
transverse directions, y-direction, the second subscript has become zero.  

Figure 12.10  Fields between parallel planes for TEM or TM00 mode 
 Principal mode:  A wave with, both Ez and Hz equal to zero, is called principal wave. In this, 
electric and magnetic vectors, both, are normal to direction of propagation, and hence, it is a 
TEM wave. This type of wave comes into being, when m = 0 for  TM mode and hence, its mode 



is TM00. Substituting m = 0 in Eq.(12.19), the field components for the principal wave can be 
obtained as, 
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The fields of principal wave, TM00 are shown in Figure 12.10, using flux-line representation. The 
concept and utility of flux lines or field lines in the representation of the fields are already 
introduced and explained. As the wave carries both electric and magnetic fields, its 
representation in guide involves both types of flux lines, i.e.  electric as well as magnetic lines. 
From the basic nature of fields, it can be noticed that electric and magnetic lines never cross each 
other. The magnetic lines are always closed curves. Both the categories of the lines can be 
sketched from the expressions of the fields in those regions. 

Apart from the general usefulness i.e. graphical representation of fields, the flux line 
representation of fields in waveguides has another important application. It is useful as well as 
used in placing the probe or loop at appropriate place to excite the required mode in the guide.  
  
--------------------------------------------------------------------------------------------------------------------- 
12.5 DISPERSION CHARACTERISTICS   
Electrical transmission media, in which the velocity of the wave depends upon its frequency, are 
called dispersive media. Parallel plates, hollow-pipe waveguides, which are now under 
consideration and optic fiber cables, used to transmit signals at light frequencies, are examples 
for this type. If the velocity is frequency independent, then such media are termed as non-
dispersive media. The parallel wire transmission lines, coaxial cables, and also free space fall in 
this category.  

As parallel plates and hollow-pipe waveguides are dispersive, the waves that are carried 
by them, TE and TM, are referred as dispersive waves. Similarly, waves carried by non-
dispersive media, TEM waves, are called non-dispersive waves.  
   To describe the wave phenomenon, parameters like wavelength, time period, frequency etc. are 
required. Along with them, the phase and group velocities also have some importance in wave 
theory, particularly, with respect to waves in non-TEM mode.  Here, both these velocities are 
considered with respect to parallel plates and waveguides. 
12.5.1 Phase velocity:  
The phase velocity, vp is defined as the velocity with which the equi-phase surfaces propagate 
along the guiding system. It can be found using,  
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(12.55) 

Parallel plate waveguides: Now, consider the phase velocity of wave travelling in between 
parallel plates/ in waveguides. An expression for phase shift constant of this wave has already 
been derived, and available in Eq. (12.44). Substituting this expression into the Eq. (12.55), one 
can get  

1 2 1 22 2
11 1 c

p
r r c

fv v v
f


  

 
      
        
             

(12.56) 

  
In the case of air-filled region between the plates, then εr=1  and μr =1, and the expression for 
phase velocity becomes  
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Table  12.1    Properties of guided wave propagation and waveguides. 
 

12.5.2 Group velocity :  
The group velocity, vg is the velocity with which the signal or group of frequencies, denoting 
intelligence, travels through the system. It is given by  
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 Parallel plates and waveguides: Now, consider the group velocity of wave travelling in 
between parallel plates/ in waveguides. By differentiating the Eq. (12.24), which relates the 
frequency with phase shift constant, one can obtain the relation for group velocity as follows:  
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Inverting the relation in Eq. (12.59), the group velocity of the wave between parallel plates can 
be obtained as,  
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The relation in Eq.(12.60) can also be put  in terms of cut-off values by simple manipulation as,   
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(12.61) 

 
In case, if the region in between the plates is free space, then  
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From the expressions of  phase and group velocities, one can easily notice that their product is 
equal to square of velocity of unbounded wave, i.e. ̅ݒvg=v2 . In case hollow region is free space, 
this product becomes c2. Various parameters of wave propagation in between the plates are given 
in the Table 12.1.  In the above expressions, Eqs.(12.61) and (12.62), the parameter v is given by 
v = 1/√με   and it can be considered as the velocity of the wave in unbounded medium having 
constants, μ and ε. It is related to free space velocity, c  through v = c/√μr εr   . 
 
Note that, in the case of air-filled waveguide,  as the frequency is increased from the cut-off to 
infinity, guide wavelength and phase velocity vary from infinity to their free space value where 
as the group velocity varies from zero to its free space value.  Also note that the phase velocity 

S.No Parameter cf f  f    
1.  Phase velocity, v    1v v    
2.  Group velocity, gv  0 v  
3.  Guide wavelength,     2       
4.  Phase shift constant,   0     



and group velocity are same for TEM wave. None of these two depend upon the frequency and 
so TEM wave is non-dispersive. 

As just seen, in parallel plate guiding system and in waveguides, as they are dispersive, 
the wavelength along the length of guide, velocities of the wave, both phase as well as the group, 
varies with the frequency. This dispersion phenomenon is mostly unwanted because, in the 
signal, it spoils the original phase relation between different frequency components, as it travels 
down the guide. Ultimately, it leads to distortion and complete or partial loss of information. 
Here, various parameters, and also expressions for them, pertaining to the dispersive nature of 
waveguides are introduced and described. 
--------------------------------------------------------------------------------------------------- 
Example 12.10: Two parallel plane infinite conducting plates are separated by 4cm. Find the 
wave velocity and group velocity of 9.0GHz wave for m =1 and 2 when values of permeability 
and permittivity are (a)   μ=μo , ε=εo and(b) μ=μo , ε=4εo.  
Solution:  
(a) For the given values of μ=μo , ε=εo and f=9.0GHz, it can be found that, 
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The wave velocity, can be found as,   
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This value is for m=1 and similarly, for m =2, it can be found that ̅1010×5.4 = ݒcm/s. 

 

As the wave is in free space, v=c and the group  velocity can be found as,    
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This value is for m=1 and similarly, for m =2, it can be found that vg = 1.6×1010cm/s. 
 
(b) For the given values of μ=μo , ε=4εo and f=9.0GHz, it can be found that, 

2 2 2 2 18
2 2

2 2 20

4 4 9 10 4 (1.2 )
3 10

r rf
c

       
  


 

The wave velocity, can be found as,   
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This value is for m=1 and similarly, for m =2, it can be found that ̅1010×2.6 = ݒcm/s. 

 

As the wave is in dielectric medium with εr=4, velocity, v=c/2 and the group velocity, can be 
found as,    
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This value is for m=1 and similarly, for m =2, it can be found that vg = 0.86×1010cm/s. 

 

 
------------------------------------------------------------------------------------------------- 
12.6. IMPEDANCES OF   WAVEGUIDES  



 It was Oliver Heaviside, who coined the term impedance for the first time in nineteenth 
century, to describe the complex ratio V/I in AC circuits. Later, Schelkunoff extended this 
concept to electromagnetic fields, in a systematic way to describe the ratio of electric to magnetic 
fields. In his opinion, impedance should be considered as a combined characteristic of  field and  
medium.   
 In waveguide theory, two types of impedances are encountered: wave impedance and 
characteristic impedance. The first one is borrowed from wave theory and it is related to ratio of 
electric field to magnetic field of a traveling wave,  where as the second impedance is related to 
the description of power flow along the length of the guide. Both these impedances are described 
in detail and corresponding mathematical expressions are derived hereunder. 
12.6.1. Wave Impedance 
The wave impedance is usually denoted by Zz and for  waveguides, it  is defined as the ratio of 
total transverse electric field strength to total transverse magnetic field strength. Mathematically,  
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Total transverse magentic field
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(12.63) 

In case of rectangular waveguides, when they are lying along the z-axis, the x- and y-components 
of the fields constitute the transverse components as they are normal to the propagation direction.  
The total transverse electric field then is √(Ex

2+ Ey
2) whereas the total transverse magnetic field 

is √( Hx
2 + Hy

2) . Thus, when the guide is lying along the z-axis, wave impedance, according to 
definition, becomes   
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In case of circular waveguides, lying along the z-axis, the ρ- and -components of fields are 
normal to propagation direction, and hence, they are the transverse components. Thus, when the 
guide is lying along z-axis, its wave impedance becomes, 
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It can be shown that the value of the impedance depends upon the mode of the wave traveling in 
the guide and it is given, for both the types of waveguides, by  
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for TM mode  (12.66)

 

 



Here η is intrinsic impedance and it is related to the constants, μ and ε , of the of the hollow 
region of the guide through η=√(μ/ε) Ω. Note that, for free space or air, the intrinsic impedance is 
120π Ω i.e., ηo = 120π Ω.   

Figure 12.13 Illustrating the variation of wave impedance with wavelength. 
In general, wave impedance is a characteristic type of wave, TEM, TE, and TM and, it 

usually depends upon the type of line or guide, the material and the operating frequency. This 
parameter of the waveguide medium can be likened, conceptually, to the intrinsic impedance of 
the free-space medium. 
12.6.2. Characteristic impedance  
The concept of characteristic impedance has been brought into and applied to waveguides from 
theory of transmission lines.  It is defined in several equivalent ways, in transmission line theory, 
in terms of line voltages, currents and power through the line. Voltage-current formula, power-
current formula and power-voltage formula respectively are 
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where V and I are voltage and current and P is the power flowing over the   line, when extended 
to infinity, all are complex quantities representing peak phasors.  
All the above definitions, give same value of characteristic impedance, when applied to a low 
frequency TEM wave carrying line. However, when applied to waveguides, different definitions 
give different values of characteristic impedance. It is mainly due to the lack of a unique 
definition for voltage and current in terms of fields in waveguide. Under such circumstances, it is 
quite possible, for the above mentioned different defining relations, which are in terms of 
voltages and currents,  to give different values of characteristic impedance. 
When the voltages and currents are computed in a commonly and widely followed method, one 
can obtain the following expressions for the characteristic impedance. 
 In case of rectangular waveguides, for dominant mode:  
    Voltage-current formula gives  
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    Power-current formula and power-voltage formula respectively give 
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 In case of circular waveguides, for dominant mode voltage-current formula, power-current 
formula and power-voltage formula respectively gives  
    Voltage-current formula gives,  
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It can also be noted that, the characteristic impedance is mode dependent. The reason is not 
difficult to find: voltages and currents are mode dependent, and hence, TE and TM waves have 
different values.  
The primary utility of characteristic impedance is, to set the value of load impedance for 
reflection-less transmission. When its value is not unique, naturally, doubt arises regarding the 
value which one has to select for matching purpose. The usual practice is, to match the wave-
guide to uniquely defined impedance, to use the impedance value that gives best agreement 
between theory and experimental data. 
12.7. ATTENUATION  

In the analysis of wave in between parallel conductor planes or in waveguides, it was 
assumed loss-free conditions, mainly, to simplify the analysis procedure.  The wave, while 
travelling through parallel conductor plane system or waveguide, comes in contact with the 
conductor planes as well as the hollow region between the conductor planes.  The planes are 
assumed to be perfect conductors and the in between region is considered as a perfect dielectric 
without any conductivity. A perfect conductor and a perfect dielectric can neither absorb nor 
dissipate the power and as result loss free situation prevailed. 

But in practice, conductivity of the planes is finite, not infinite and that of the in between 
region is not zero, a nonzero. As a consequence, the wave, while traveling through the parallel 
plane guiding system, gets absorbed, however small it may be, by the conductor planes as well as 
the in between region. It ultimately leads to attenuation of the wave, called dissipative 
attenuation.   

The dissipative attenuation has two components: dielectric losses and conductor losses. 
Due to nonzero conductivity, the region in between the plates absorbs power from the wave 
leading to its attenuation, which is accounted for by dielectric loss. Similarly, due to finite 
conductivity, the plates absorb power from the wave, attenuating it, and it is accounted by 
conductor loss. 

In case of non-TEM wave carrying systems, in addition to dissipative attenuation, another 
type, called reflective attenuation also exists. This comes into being when the wavelength of 
wave is not small enough to get admitted into guiding system. Magnitude wise, it is enormously 
large when compared to dissipative attenuation. All the types of attenuations are placed in the 
Table 12.4. 

Table 12.4 Attenuation properties of waveguides. 

S.No. Reflective 
attenuation, dB/m Dissipative attenuation, Np/m  

1.  254.6 
   

Dielectric losses Conductor losses 
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power dissipated/unit length
2×power flow down the guidec 

 
2.  f < fc f > fc 
3.  Huge Very low 

Now, the analysis of the wave when it is traveling through a practical, not ideal loss-free guide, 
is undertaken. 
 
12.7.1 Reflective Attenuation:    
When wavelength is more than the cut-off wavelength i.e., λ > λc , the wave cannot enter into the 
guiding plates or waveguides. This behavior of the guiding system is taken into account by 
attributing large amount of reflective attenuation to the guiding system. The important features of 
this attenuation are:  

 When a guiding system  is excited with a wave whose wavelength is more than cut-off 
value,  i.e., λ > λc , the electric and magnetic fields of the wave decay in the guide 
exponentially with distance at a very rapid rate due to huge amount of attenuation.   
 The resultant attenuation depends only on the ratio λ/λc i.e. free space wavelength to the 
cut-off wavelength.    
 The attenuation, however, is independent of properties of guiding plates or in-between 
region. This feature is very much unlike the dissipative attenuation, which is dependent 
upon the conductivity of the guiding walls and the hollow region in between the walls. 
 The exact relation for attenuation per unit length  in dB is  
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     (12.70)    

When the wavelength is much greater than its cut-off value, the above formula can be 
approximated to 

         
(12.71)

 
 These relations apply to all modes of propagation and it can be observed that when λ/λc 
large, the attenuation is large and substantially independent of frequency.  

12.7.2 Dissipative attenuation:  
When wavelength is less than its cut-off value, i.e., λ < λc , the wave can exist inside and  travel 
through the guiding system. While traveling, some of its energy gets absorbed by the walls due 
to their finite conductivity and also by the hollow region due to its non-zero conductivity, 
resulting in dissipative attenuation. Its two components, dielectric loss and conductor loss, and 
both are described and discussed about, one after another here. 
Attenuation due to dielectric loss: The attenuation the wave undergoes while it is traveling 
through the guide, due to energy absorption by the lossy dielectric region of the guiding system 
is called  dielectric loss. It can be shown that the dielectric loss is                
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Note that if the dielectric is a perfect one i.e. without conductivity, then this loss would not 
occur. 

54.6

c








Proof: If the region in between the plates is a perfect dielectric i.e. with zero 
conductivity, then its permittivity, ε is, let us say εoεr i.e., ε= εoεr, as shown in Figure 12.13(a).  
When the region is an imperfect dielectric i.e. with nonzero conductivity, let us say, σ, then its 
permittivity, ε becomes  εoεr(1–jtan δ) = ε(1–jtan δ)  , where tan δ is called loss tangent and is 
given by tan δ =σ/ωε, as shown in Figure 12.13(b). Note that loss tangent assumes zero value for 
perfect dielectric media. 
In case of perfect dielectric in between the plates, and wave inside the guides, the propagation 
constant, from Eq. (12.22), is   

2 2j h          (12.73) 
 

However, with imperfect dielectric in between the plates, the propagation constant becomes  

  2 2 2 2 21 tan tanh j h j                
(12.74) 

In the above relation, note that the expression for permittivity used is that of an imperfect 
dielectric, given by ε(1–jtan δ). The last term in Eq. (12.74),   in general,  is very small, because 
of low conductivity of the dielectric region.  Now if, h2 – ω2με = a2 and  ω2με tan δ = x2   then the 
propagation constant in Eq. (12.74) can be written as   

2 2a jx    

Figure 12.13 Dielectric loss in (a) perfect dielectric and in (b) imperfect dielectric. 
In practice, as already mentioned  x is very small and x<<a. In such case, the propagation 
constant can be approximated, with the help of Taylor’s series expansion, as 
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From Eq. (12.73), as 2 2j h    the above Eq. (12.75) can be expressed in terms of phase 
shift constant,  as 
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But, from definition, the real part of propagation constant is attenuation constant. Thus, the 
attenuation constant due to dielectric loss becomes    
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In the above expression, β, phase shift constant for TEM wave, is substituted for ω√με.  This 
relation for attenuation is valid for all types of waves, i.e. TEM,  TE and  TM waves.  However, 
in the case of TEM waves, ̅ߚ=β= ω√με, making the relation the attenuation constant as   
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It can be observed that the dielectric loss becomes nil when the conductivity or loss tangent of 
the dielectric is zero. The above relations for attenuation constant due to the dielectric loss are 
most general and can be used with any type of guiding system including waveguides. 
Attenuation due to conductor loss: While traveling through the guide, wave also undergoes 
considerable amount of attenuation due to absorption by the conducting plates. The attenuation 
due to conductor loss can be found as   

power dissipated/unit length Np/m
2×power flow down the guidec 

     
(12.77) 

Note that if the  plates are perfect conductors, then this type of attenuation would not 
have occurred.  Thus, it is due to  finite conductivity of the walls of waveguide. 
Proof: The derivation of the above formula is based on the principles of transmission line theory. 
Consider a finite length transmission line and let us suppose the voltage and current phasors 
along the line, when it is extended to infinity, are   

 
Then the average power transmitted is  

 
The rate of decrease of transmitted power along the line will be  

 
The decrease of transmitted power per unit length of line is  

 
And,  this is the power dissipated per unit length. Solving the above equation for the attenuation 
constant  
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It leads to the expression for attenuation constant  

 
This relation is a most general one and it can be used to find the attenuation in parallel plate 
system as well as in waveguides.   
 
12.7.3. Attenuation in Parallel plate guide 
Attenuation for TEM wave : Now the Eq. (12.77) is applied to parallel plate guiding system to 
find conductor losses, first for TEM wave and then for TE/TM waves. The field components for 
the principal or TEM wave, from Eq.(12.51), are  
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The surface current density over inner face of each plate can be computed from, K= ࢔ෝ×H and its 
amplitude can be found as, K=Co. The loss per m2 on each plate is K2Rs/2=ܥ௢ଶRs/2. Here, Rs    is 
the surface resistance of the conducting plane and it is given by  
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The total loss in both lower and upper plates per meter length with in a width of b meters 
becomes, ܥ௢ଶRsb. Thus, the power loss per unit length becomes, ܥ௢ଶRs.  According  to Poynting 
theorem, the power transmitted down the guide per unit cross sectional area is Re(E×H*)/2.  In 
the present case, the fields are at right angles and in time phase. Their ratio is η, intrinsic 
impedance of the in between region.  Thus, the power flow per unit cross sectional area becomes 
ηܥ௢ଶ/2. When the spacing is a  and width is b , the cross sectional area becomes, ba . Thus,  
power transmitted through this area = ηܥ௢ଶba/2. With availability of power loss and power flow, 
the attenuation factor can now be computed, using Eq.(12.77), as 
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Attenuation for TE/TM wave:  Let us consider first the TE wave and, its field components 
from Eq. (12.19) are:  
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First, the power losses are computed, from the available field expressions. The surface current on 
each plate is  
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The loss in each plate then becomes   
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The total loss is twice that given by the above expression. The power transmitted in the z- 
direction per unit area, using Poynting theorem, can be calculated as   
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The power transmitted in the z- direction per one meter width, when the spacing is a , is  
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Figure 12.14  Variation of attenuation with frequency in parallel plate system. 
 
With availability of power loss and power flow, the attenuation factor can now be computed, 
using Eq.(12.77), as 
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Substituting the expression for phase shift constant, from Eq. (12.50) and (12.13), it can be 
obtained that 
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From the above expression, it can be observed that the attenuation is infinity at cutoff  and falls 
to low values at higher frequencies. At frequencies very much higher than cutoff, the attenuation 
varies, inversely as the three halves power of the frequency. 

For TM, waves, the attenuation factor can similarly be found. For these waves, the 
attenuation reaches a minimum at a frequency that is √3 times the cutoff frequency and then 
increases with frequency. At frequencies much higher than cutoff, the attenuation varies, directly 
as square root of the frequency. The variation of attenuation with frequency in parallel plate 
system for different types of waves is shown in Figure 12.14. 



  

 

UNIT-IV 

GUIDED WAVES 

Assignment-Cum-Tutorial Questions 

SECTION-A 

1. Wave in guide travels through       [ ]            

(a) Guide walls (b) dielectric (c) Both (a)and (b) (d) None  

2. The propagation constant pure real implies               [ ]  

(a) Wave without attenuation  (b) No wave motion      

 (c) Wave with attenuation  (d) None  

3. The propagation constant pure imaginary implies             [ ] 

(a) Wave without attenuation   (b) No wave motion  

(c) Wave with attenuation    (d) None  

4. The propagation constant complex implies              [ ] 

(a) Wave without attenuation  (b) No wave motion  

(c) Wave with attenuation    (d) None  

5. In TM wave, H can have component         [ ] 

 a) Parallel to propagation    b) Normal to propagation    

 c) Both (a) and (b)   d) None of these 

6. In TE wave, H can have component         [ ] 

 a) Parallel to propagation    b) Normal to propagation    

 c) Both (a) and (b)          d) None of these 

7. The lowest order TE wave in between parallel conducting plates is           [ ] 

(a) 10TE  (b) Principal wave (c) Both(a) and (b) (d) None  

8. The principal wave is                 [ ] 

(a) 
00TM  (b) TEM wave  (c) Both(a) and (b).   (d) None  

9. The nature of the wave normal to plates is                [ ] 

(a) Pure standing  (b) Pure traveling (c) Impure traveling (d) None  

10. The nature of the wave parallel to plates is                [ ] 

(a) Pure standing (b) Pure traveling (c) Impure traveling   (d) None  

11. The following wave in the parallel plate waveguide is called principal wave  

          [           ] 

A) TE wave  B) TM wave  C) TEM wave  D) Plane wave 

12. The following wave is called TE wave      [          ] 

a. Electric field component normal to wave propagation direction is zero   

b. Electric field component tangential to wave propagation direction is zero 

c. Magnetic field component normal to wave propagation direction is zero  

d. Magnetic field component tangential to wave propagation direction is zero 

13. The following mode is not possible in parallel plate waveguide.  [           ] 

A) TE1   B) TE0   C) TM1  D) TM0 



 

 

14. On the surface of a perfect conductor, the following statement is true  [       ] 

a. Tangential component of H field is zero  

b. Normal component of E field is zero   

c. Tangential component of E field is zero        

d. Both tangential and normal of E field is zero 

15. Which of the following are not guided waves?                            [       ] 

    A) Waves along ordinary parallel wires B) Waves in waveguide 

C) Waves in co-axial transmission line D) waves travelling in free space 

16. The cut-off wavelength of wave in between parallel plane conductors is ------------------- 

17. The phase shift constant for wave in between parallel plane conductors is ----------------- 

18. The phase shift constant for wave in between parallel plane conductors at cut-off is -----  

19. The phase shift constant for wave in between parallel plane conductors at high 

frequencies  is ----------------------------   

20. Transmissions lines carry waves in--------------- mode where as waveguides carry in-----

------------------------- TEM mode. 

21. Pure real value of propagation constant indicates---------------- attenuation and -----------

---------------- wave motion. 

22. Pure imaginary value of propagation constant indicates------------ attenuation and -------

---------------- wave motion. 

23. In TE wave the electric vector is------ transverse to the direction of propagation of 

wave.  

24. In TE wave the magnetic vector has---         --- component along the direction of 

propagation of wave. 

25. In TM wave the magnetic vector is entirely------ to the direction of propagation of 

wave.  

26. In TM wave the electric vector has a------ along the direction of propagation of wave. 

27. In TEM wave both the electric and magnetic vectors are entirely------ the direction of 

propagation of wave.  

28. In mixed or hybrid wave, both the electric and the magnetic vector have components----

-------------------- the direction of propagation of wave. 

29. For a perfectly conducting planes 𝐸𝑡𝑎𝑛𝑔𝑒𝑛𝑡𝑖𝑎𝑙 =__________________  

30. The cut-off frequency of wave in between parallel plane conductors is --------------------          

31. A waveguide acts as a ________________ filter. 

32. Transverse electric waves are called as ____________ waves. 

33. Define degenerative modes? 

34. Define Dominant mode. 

35.  Define Attenuation (𝛼) in parallel plane waveguide. 

 

SECTION-B 

Descriptive questions 

1. Derive the expressions for field components of TM wave parallel plane waveguide. 

[C05] 



2. Derive the expressions for field components of TE wave in parallel plane waveguide. 

[C05] 

3. Prove that TEM mode is not possible in parallel plane waveguides. [C05] 

4. Derive the expressions for the following parameters of TE wave in parallel plane 

waveguide. 

i) Cutoff frequency 

ii) Phase velocity 

iii) Free space wavelength 

iv) Guided wavelength 

v) Group velocity 

vi) Transverse electric impedance. [C05] 

5. Derive the expressions for the following parameters of TM wave in parallel plane 

waveguide. [C05] 

i) Cutoff frequency 

ii) Group velocity 

iii) Cutoff wavelength 

iv) Guided wavelength 

v) Transverse magnetic impedance 

vi) Phase velocity 

6. Compare the characteristics of TE waves and TM waves in parallel plane waveguide. 

[C04] 

7. Prove that the infinite parallel plane conductors act as high pass filter. Define the terms  

Cut off frequency and cutoff wavelength. [C04] 

8. Derive TE mode field expressions for guided waves between parallel plates. [C05] 

 

Problems 

1. A parallel plate waveguide is having a dielectric medium with εr =2.25  and μr =1. 

Determine its spacing a when its dominant mode cutoff frequency is 5GHz.  [C06]   

   

2. A parallel plate waveguide of spacing a= 4cm, is having a dielectric medium with εr =4  

and μr =1. Determine the TE modes that can propagate when the frequency is 5GHz.  Also 

find fc  and λg for each propagating mode. [C06]   

   

3. A parallel plate waveguide of spacing a= 5cm, is having free space medium in between. If 

it is excited with fundamental 2GHz and its harmonics, determine all the frequencies that 

propagate in TE10 mode. [C06]   

  

 

4. A 4GHz wave is propagating in a nonmagnetic medium having  a dielectric constant, εr 

=2.2. When the phase shift constant is found as 540 /cm, find the cutoff wave number. 

[C06]   

             



5. Find the cutoff frequency of TM2 mode in an air filled parallel plane waveguide. The 

spacing between the plates is given as 10 cm. [C06]   

6. Find the phase velocity of a mode propagating at 6 GHz in an air filled parallel plane 

waveguide. The cutoff frequency of the mode is given as 1.5 GHz. [C06]   

7. An air filled parallel plane waveguide carries TM2 mode. The height of the waveguide is 20 

cm. If the phase velocity of the mode is 1.5c, find the frequency and guided wavelength of 

the mode. [C06]   

8. Find the cutoff frequencies of TM3 and TM4 modes of an air filled parallel plane 

waveguide having height 20 cm. [C06]   

9. An air filled parallel plane waveguide carries TE2 mode. The height of the waveguide is 10 

cm. if the phase velocity of the mode is equal to velocity of light finds the frequency and 

guided wavelength of the mode. [C06]   

10. In a parallel plane waveguide, the phase velocity of TE3 mode is 1.5c. Find the guided 

wavelength of TM2 mode inside the waveguide. The waveguide has been filled with a 

material having dielectric constant 16 and frequency of the wave is 2 GHz. [C06]   

 

 

SECTION-C 

 

1. Attenuation constant in Np/m due to conductor loss is     [ ]   

    

a)

 

power dissipated/unit length

2×power flow down the guide
   

b)
2×power flow down the guide

power dissipated/unit length
 

c)
power dissipated/unit length

power flow down the guide
  

c) None of these

  
2. Reflective attenuation comes into being when the frequency of the wave is [ ] 

                   

a) Less than cut off frequency   b) More than cut off frequency  

c) Both (a) and (b)   d) None of these  

 

 

 

 



 

 

 

 



 

UNIT -V  
Rectangular Waveguide 

 we have considered the case of guided wave between a pair of infinite conducting planes. In this 

lecture, we consider a rectangular wave guide which consists of a hollow pipe of infinite extent but 

of rectangular cross section of dimension 𝑎 × 𝑏. The long direction will be taken to be the z 

direction. 

  

 

 

 

 The second set of equations are obtained from the Faraday’s law, (these can be written down from 

above by 𝐸 ↔ 𝐻, 𝜖→ −𝜇 

 

As in the case of parallel plate waveguides, we can express all the field quantities in terms of the 

derivatives of 𝐸𝑧 and𝐻𝑧. For instance, we have, 



 

The other components can be similarly written down, 

 

As before, we will look into the TE mode in detail. Since 𝐸𝑧=0, we need to solve for 𝐻𝑧 from the 

Helmholtz equation, 

 

Remember that the complete solution is obtained by multiplying with 𝑒−𝛾𝑧+𝑖𝜔𝑡. We solve equation 

(5) using the technique of separation of variables which we came across earlier. Let 

 



 

The boundary conditions that must be satisfied to determine the constants is the vanishing of the 
tangential component of the electric field on the plates. In this case, we have two pairs of plates. The 
tangential direction on the plates at 𝑥=0 and 𝑥=𝑎𝑎 is the y direction, so that the y component of 
the electric field  
𝐸𝑦=0 at 𝑥=0,. 
 Likewise, on the plates at 𝑦=0 and 𝑦=𝑏,  
𝐸𝑥=0 at 𝑦=0, 
 
We need first to evaluate 𝐸𝑥 and 𝐸𝑦 using equations (1) and (2) and then substitute the boundary 
conditions. Since 𝐸𝑧=0, we can write eqn. (1) and (2) as 

 



 
For propagation to take place, 𝛾 must be imaginary, so that the cutoff frequency below which 
propagation does not take place is given by 

 
The minimum cutoff is for TE1,0 (or TE0,1 ) mode which are known as dominant mode. For these 
modes 𝐸𝑥 (or 𝐸𝑦) is zero.  
 
TM Modes  
We will not be deriving the equations for the TM modes for which 𝐻𝑧=0 . In this case, the solution 
for 𝐸𝑧, becomes, 

 
As the solution is in terms of product of sine functions, neither m nor n can be zero in this case. This 
is why the lowest TE mode is the dominant mode.  
For propagating solutions, we have, 
 

 



 
 
For propagating TE mode, we have, from (1) and (4) using 𝐸𝑧=0 

 

 

𝜼𝑻𝑬 =
𝜼

√𝟏 − (
𝒇𝑪
𝒇

)
𝟐

 

𝜼𝑻𝑴 = 𝜼√𝟏 − (
𝒇𝑪

𝒇
)

𝟐

 

 
 
Impossibility of TEM mode in Rectangular waveguides  
We have seen that in a parallel plate waveguide, a TEM mode for which both the electric and 
magnetic fields are perpendicular to the direction of propagation, exists. This, however is not true of 
rectangular wave guide, or for that matter for any hollow conductor wave guide without an inner 
conductor.  
We know that lines of H are closed loops. Since there is no z component of the magnetic field, such 

loops must lie in the x-y plane. However, a loop in the x-y plane, according to Ampere’s law, implies 

an axial current. If there is no inner conductor, there cannot be a real current. The only other 

possibility then is a displacement current. However, an axial displacement current requires an axial 

component of the electric field, which is zero for the TEM mode. Thus TEM mode cannot exist in a 



hollow conductor. (for the parallel plate waveguides, this restriction does not apply as the field lines 

close at infinity.) 

Evanescent wave or mode 

This is defined as a wave TEmn or TMmn  in which the operating frequency is less than the cutoff 

frequency and wave propagation does not take place. 

 

observations regarding TMmn  mode :  

(1) Similar to that of the parallel plane waveguide the fields exists in the discrete electric and 

magnetic field pattern called modes of waveguide.  

(2) All field components are sinusoidally in x and y directions.  

(3) All transverse fields go to zero if either m or n is zero. In other words, both the indices m and n 

have to be non-zero for existence of the TM mode. That is, TMm0  and TM0n  modes can not exist. 

Consequently, the lowest order mode which can exist is TM11  mode.  

Substituting Ez, we get what is called the dispersion relation for the mode as         

 

Observations regarding TE  mode :  

(1) The fields for the TE modes have similar behaviour to the fields of the TM modes i.e they exist in 

the form of discrete pattern, they have sinusoidal variations in x and y directions, indices m and n 

represent number of half cycles of the field amplitudes in x and y direction respectively and so on. 

 (2) Unlike TM mode both indices m and n need not be non-zero for the existence of the TE mode. 

However, of both the indices zero makes the magnetic field independent of space and therefore 

cannot exist. In other words,TE00 mode cannot exist but TEm0 and TE0n modes can exist.  

(3) The lowest order mode for the TE case therefore would be TE10 and TE01. 

Cutt-off Frequecy of TE and TM mode 

For both TMmn TEmn and modes the phase constant is given by 

 

For the mode to be travelling β has to be a real quantity. If  β becomes imaginary then the fields no 
more remain 
travelling but become exponentially decaying 



The frequency at which β changes from real to imaginary is called the cut-off frequency of the mode. 
At cut-off 
frequency therefore β giving 

 

As the order of the mode increases the cut-off frequency also increases i.e with increasing frequency 
there is possibility of existence of higher order mode. 
The very first mode that propagates on the rectangular waveguide is TE10 mode and therefore this 
mode is called the dominant mode of the rectangular waveguide.  
 

 

 



 

UNIT-V 

RECTANGULAR WAVE GUIDES 

Assignment-Cum-Tutorial Questions 

SECTION-A 

1. Wave in guide travels through      [ ]  

(a) Guide walls    (b) dielectric   

(c) Both (a) and (b)      (d) None  

2. The propagation constant pure real implies    [ ]            

(a) Wave without attenuation  (b) No wave motion  

(c) Wave with attenuation  (d) None  

3. The propagation constant pure imaginary implies    [ ]           

(a) Wave without attenuation  (b) No wave motion  

(c) Wave with attenuation  (d) None  

4. The propagation constant complex implies    [ ]           

(a) Wave without attenuation   (b) No wave motion  

(c) Wave with attenuation    (d) None  

5.  In TM wave, H can have component         

 a) Parallel to propagation   b) Normal to propagation    

 c) Both (a) and (b)        d) None of these 

6. The bandwidth  of RWG  is      [ ]             

(a) 1:2    (b) 1:3 

(c)  1:4  (d) None  

7. Dominant mode in rectangular wave guide is given  by  [ ]   

a) TE10  b) TE11   

c) TE01  d) TE12 

8. Dominant mode in circular wave guide is given  by   [ ]   

a) TE10  b) TE11   

c) TE01  d) TE12 

9. In TE20 of RWG, the number  of half waves in x- direction  [ ]   

a) 2  b) 1   

c) 4  d) 0 

10. In TE wave, H can have component         [ ]  

  a) Parallel to propagation   b) Normal to propagation    

  c) Both (a) and (b)         d) None of these 

11. The dimension ratio a/b  in RWG is      [ ]             

(a) 1  (b) 3  (c) 2  (d) None  

 

12. In TE wave of a rectangular waveguide, H can have component. [ ] 

A) Parallel to propagation      B) Normal to propagation     

C) Both A and B   D) None of these 

13. In TE31 mode, the number of half wavelengths along y direction is   [ ] 

A) 3  B) 1  C) 4  D) 0 



14. Purely imaginary propagation constant implies.     [          ] 

A) No wave propagation   B) Wave propagates with attenuation   

C) Wave propagates without attenuation D) None of these 

15. Cutoff frequency of a rectangular wave guide is given by    [ ] 

 A) 𝜔√𝜇𝜀√1 −
𝑓𝑐

2

𝑓2  B) 
1

2√𝜇𝜖
√

𝑚2

𝑎2 +
𝑛2

𝑏2 C) 
𝜆

√1−
𝑓𝑐

2

𝑓2

 D) 
𝜂

√1−
𝑓𝑐

2

𝑓2

 

16. Phase constant of a waveguide is given by     [ ] 

A) 𝜔√𝜇𝜀√1 −
𝑓𝑐

2

𝑓2         B) 
1

2√𝜇𝜖
√

𝑚2

𝑎2 +
𝑛2

𝑏2       C) 
𝜆

√1−
𝑓𝑐

2

𝑓2

         D) 
𝜂

√1−
𝑓𝑐

2

𝑓2

 

17. Guided wavelength is given by       [ ]  

A) 𝜔√𝜇𝜀√1 −
𝑓𝑐

2

𝑓2         B) 
1

2√𝜇𝜖
√

𝑚2

𝑎2 +
𝑛2

𝑏2       C) 
𝜆

√1−
𝑓𝑐

2

𝑓2

         D) 
𝜂

√1−
𝑓𝑐

2

𝑓2

 

 

18. Characteristic wave impedance of  the rectangular waveguide in TE mode is given by  

[ ]                                                                                                          

A) 𝜔√𝜇𝜀√1 −
𝑓𝑐

2

𝑓2         B) 
1

2√𝜇𝜖
√

𝑚2

𝑎2 +
𝑛2

𝑏2       C) 
𝜆

√1−
𝑓𝑐

2

𝑓2

         D) 
𝜂

√1−
𝑓𝑐

2

𝑓2

 

 

19. In TM wave the magnetic vector is entirely--- to the direction of propagation of wave.  

20. In TM wave the electric vector has a------ along the direction of propagation of wave. 

21. The cut-off frequency of rectangular waveguide is------------  

22. The cut-off wavelength of rectangular waveguide is------------, its guide wavelength is 

------   

23. Mode subscripts m and n in rectangular waveguides indicate the no. of half 

wavelengths along------ directions respectively. 

24. Dominant mode in rectangular guides is------  whereas in circular waveguides it is ---- 

25. Cut-off wavelength for dominant mode is equal to 2a where a is ------ distance 

between the sidewalls of the waveguide. 

26. Degenerate modes of waveguides are------ modes having same cut-off frequency. 

27. Rectangular waveguides are dimensioned with ratio a/b approximately equal to------. 

28. In a TE mode ____________                                          [      ] 

A) Ez = 0 B) Hz = 0 C) Ez = Hz = 0  D) fc = 0 

 



29. TEM mode propagation is not possible in the following transmission medium. [ ] 

A) Co-axial cable         B) Two wire transmission line    

            C) Micro strip lines    D) Rectangular waveguide 

30. The cut-off wavelength 𝜆𝑐 for a dominant mode in rectangular waveguide ___ 

31. The mode having the lowest cut-off frequency in rectangular waveguide is ____                                                                                                            

32. For an air filled rectangular waveguide, the guided wavelength 𝜆𝑔 is ______ 

33. In a TE m n mode of a rectangular waveguide, m and n represents_____   

34. The Dominant mode in the rectangular waveguide is ____________ 

35. Cutoff wavelength of a rectangular waveguide in  TE10 mode is __________ 

36. When the broader wall dimension of the rectangular waveguide a = 2.4 cm, find the cutoff 

wavelength for dominant mode 𝜆𝑐 = _____ 

37. Guided wavelength (𝜆𝑔) for an air filled waveguide is 8.4 cm. If the same waveguide is filled 

with dielectric material of having 𝜖𝑟 = 4, new 𝜆𝑔 _____ 

38. What is TE, TM waves in rectangular waveguides? 

39. Give example of a pair of degenerative modes in rectangular waveguide and justify your 

answer. 

SECTION-B 

Descriptive questions 

 

1. Define and differentiate phase velocity from group velocity. [C04]   

2. Prove that the velocity of the wave in waveguides is a function of frequency. What is  

guide wavelength? [C04]   

3. Prove that the rectangular waveguide is high pass filter. Define the terms cut-off  

frequency and cut-off wavelength. [C04]   

4. What is the meaning of mode of the wave? Give a complete description of modal  

propagation characteristics of  waves in RWGs. [C04]     

5. How the bandwidth of waveguides is defined? How the dimensions of the rectangular  

waveguides are selected to give maximum bandwidth. [C04]   

6. Derive TE mode field expressions for rectangular waveguide. [C05]   

7. Derive the expressions for field components of TE wave in rectangular waveguide. 

[C05]   

8. Illustrate the field patterns of TE10 and TE20 modes in rectangular waveguides with 

neat sketches. [C05]    

9. Explain why TEM mode is not possible in rectangular waveguide. [C05]   

10. State the formulas for the following parameters related to rectangular waveguide 

operated in TEmn mode: 

i. Cutoff frequency 



ii. Cutoff wave-number 

iii. Propagation constant 

iv. Wavelength in the waveguide 

v. Phase constant 

vi. Phase velocity 

11. Derive the expressions for field components of TM wave in rectangular waveguide. 

[C05]   

12. Explain the following: i) Dominant mode, ii) Degenerative modes. [C04]   

 
Problems 

1. The dimensions of an air dielectric waveguide working at 5.2GHz are  4.75×2.21 cm.  Find  

its (a)
 
dominant mode cutoff frequency  and (b) guide wavelength.  [C06]   

            Answers: (a) 3.157 GHz (b) 7.26cm   

2. The ratio of dimensions of an air dielectric waveguide are  a/b=2.  Its
 
dominant mode 

cutoff frequency is 850MHz and guide wavelength is 40cm. Find  its (a) operating 

frequency, (b) dimensions of guide  and (b) phase shift constant. [C06]    

            Answers: (a) 1.13 GHz (b) 17.65 × 8.82cm (c)  15.59 rad/m   

3. The ratio of dimensions of an air dielectric waveguide are  a/b=2.  Its
 
dominant mode 

cutoff frequency is 9GHz. When it is designed to work in 12.5 to 19GHz range, find  its 

dimensions. [C06]    

            Answers: 1.66 × 0.83cm    

4.  A loss-less air-dielectric S-band waveguide, carrying wave in TE11 mode, has inside 

dimensions 7.214×3.404cm.  When the operating frequency is 1.2 times the cutoff 

frequency of the mode, find (a) cutoff wave number (b) cutoff frequency (c) operating 

frequency (d) propagation constant (e) cutoff wavelength (f) operating wavelength  and (g) 

guide wavelength . [C06]   

 Answers: 102.05 rad/m, 4.87GHz, 5.84GHz, j67.61/m, 6.16cm, 5.14cm, 10.10cm 

5. The dimensions of an air filled rectangular waveguide are 4 cm x 2 cm. Find (i) Cutoff 

frequency for the dominant mode (ii) guide wavelength at 6 GHz. [C06]   

6. The ratio of dimensions of an air filled rectangular waveguide is a/b = 2. Its cutoff 

wavelength is 3.32cm. (i) Find the dimensions of the waveguide (ii) Phase shift constant at 

12 GHz. [C06]   

7. An air filled rectangular wave guide has dimensions of a = 7 cm and b = 3.5 operates in the 

dominant mode.   [C06]                                                    

i. Cutoff frequency 

ii. Phase velocity of the wave in the guide at a frequency of 3.5 GHz. 

iii. Guided wavelength at the same frequency. 



8. Consider a rectangular waveguide with dimensions a = 2.29 cm and b = 1.145 cm is filled 

with dielectric material having 𝜀𝑟  = 2.5 and µ𝑟 =1. The cutoff wavelength and cutoff 

frequency for TE10, TE20 and TM11. [C06]   

9. Find out the cutoff frequencies for TM12 mode in air filled rectangular waveguide whose 

dimensions a and b, respectively are (i) 10. x 0.5 cm, (ii) 0.5 x 1.0 cm, (iii) 1.0 x 1.0 cm. 

[C06]   

10. A standard rectangular waveguide has internal dimensions a = 1.905 cm and, b = 0.953 cm. 

the waveguide is air filled  and propagates waves at 18 GHz. Calculate the following 

parameters for the TM11 mode: [C06]   

i) Critical frequency 

ii) Guide wavelength 

iii)  Phase constant 

iv) Propagation Constant 

v) Phase velocity 

vi) Wave impedance 

SECTION-C 

1. The phase velocity v̅ is given by       [ ]            

(a) v  =     
(b)

  
( )

22v m a   = −
 

(c)
  

( )
2

1 1 cv   = +
     

(d)  All 
            

2. The cut off frequency of TEM wave is      [ ]           

(a) Infinite (b) Zero (c) 1 2 
  (d) None 

3. The ratio of E to H is free space intrinsic impedance only in case of  [ ]            

(a) TEM wave (b) TE wave (c) TM wave   (d) None 

4. The group velocity vg is given by       [ ]             

(a) 
2

gv c v=    (b) ( )
2

1 2gv c m a= −
   

 
(c) Both(a) and (b)  (d)  None 



















































UNIT-VI 

CIRCULAR WAVE GUIDES 

Assignment-Cum-Tutorial Questions 

SECTION-A 

1. Dominant mode in circular wave guide is given  by   [ ]   

a) TE10 b) TE11  c) TE01  d) TE12 

2. In cylindrical waveguide, the impedance, ZTE is given by   [ ]      

a)    b)    c)     d)   

3. Possible number of modes that can  exist in cylindrical waveguides is [ ]          

a) Zero b) One  c) 2  d) Infinite 

4. Nonexistent modes in circular wave guides are    [ ]         

a) TE10 b) TE00  c) both  d) None of these  

5. The cut off wavelength of the guided wave is    [ ]            

(a)
 

2
c

a
f

m
=

 

(b)

  
2

c

m
f

a 
=

 

(c)

  
2

c

a
f

m 
=

 

(d) None

  
6. The Dominant mode in the circular waveguide is    [ ] 

A) TM  1 1  B) TE 1 1 C) TM 1 0  D) TE 1 0 

7. The waveguide is a ____________ filter.     [ ] 

A) Low pass  B) High pass C) Band pass  D) Band stop 

8. Degenerative modes are the modes having     [ ] 

 A) Equal cut-off frequencies B) Equal tangential powers 

   C) Equal wave impedances  D) Equal phase velocities 

9. Theoretically, number of modes that can exists in cylindrical waveguides is [ ] 

A) zero  B) one  C) two  D) infinite 

10. The cut-off frequency in circular waveguides for TM mode is ---------- 

11. The cut-off frequency in circular waveguides for TE mode is ----------- 

12. The cut-off wavelength in circular waveguides for TM mode is ---------- 

13. The cut-off wavelength in circular waveguides for TE mode is ----------- 

14. The phase velocity in waveguides is ---------- whereas the group velocity is -------- 

15. In waveguides, the wave impedance is ------- for TE mode and it is ------- for TM mode. 

16. Reflective attenuation comes into being when wave frequency is------ than cut-off 

frequency.  

17. Dissipative attenuation comes into being when wave frequency is------ than cut-off 

frequency. 

18. The dominant mode in circular waveguides is _______ 

19. The expression for phase velocity in circular waveguides is _______ 

20. The expression for guide wavelength of circular waveguide is_______ 

21. The expression for wave impedance in TE mode of circular waveguide is________ 

22. The cutoff frequency in circular waveguide for TM mode is _______ 

23. The cutoff wavelength in circular waveguide for TE mode is ______ 

24. How TE and TM modes are defined in circular waveguides? 



25. Explain the filter characteristics of circular waveguide. 

26. Dominant mode in rectangular guides is------  whereas in circular waveguides it is ------ 

27. Degenerate modes of waveguides are------ modes having same cut-off frequency. 

28. The order of mode subscripts m and n in rectangular guides is------ whereas in circular 

guides it is--------------. 

 

SECTION-B 

 Descriptive questions 

1. Describe the modal propagation characteristics in the circular waveguides. How the 

mode description of CWGs is different from that of RWGs. [C04]   

2. Define different types of impedances of  the waveguides and write down expressions 

for  the impedances in case of CWGs. [C04]   

3. What are two types of attenuations that exist in CWGs? Write down general 

expressions for both the types of attenuation. [C04]   

4. Derive the field components of TM waves in circular waveguides. [C05]   

5. Derive the field components of TE waves in circular waveguides. [C05]   

6. TEM mode is not possible in circular waveguide. Justify the statement. [C05]   

7. Illustrate the field patterns of TM01 and TE01 modes in circular waveguides with neat 

sketches. [C05]   

8. State the formulas for the following parameters related to air filled  circular waveguide 

operated in TEmn mode: [C05]   

i. Cutoff frequency 

ii. Propagation constant 

iii. Wavelength in the waveguide 

iv. Phase velocity 

9. Define dominant and degenerative modes. Write examples for few degenerative modes 

in circular waveguides. [C04]   

10. In circular waveguides, TE10 mode is not possible. Justify this? [C05]   

11. Which is the dominant mode in circular waveguides? Why TE10 mode is not possible 

in circular waveguides? [C05]   

12. What is cut off frequency? Derive relation connecting cut off frequency with 

dimensions of guide.  [C04]   

 Problems 

1. An air-filled circular waveguide has radius of 5cm and act as being operated at 3GHz. 

Find its cut-off frequency, cut-off wavelength, guide wavelength and phase velocity 

for  (a) TE11 and (b)TM01. [C06]   

2. An air-filled circular waveguide with an inner radius of 1.2 cm is operating in 

TM01mode. Determine its cutoff frequency. If it is operating at a frequency of 10GHz, 

then find wavelength in the waveguide. [C06]   

3. TE11 wave is propagating through an air filled circular waveguide of diameter 8 cm. 

the first order Bessel root value for this mode Xnp = ha = 1.841. Then find: 

 i) Cutoff frequency  ii) Wave impedance.  [C06]    

4. A TE11 wave is propagating through a circular wave guide has a diameter. The 

diameter of the guide is 10 cm, and the guide is air filled. Compute the following:                                            



i. Cutoff frequency 

ii. Wavelength in the waveguide 

iii. Phase constant 

iv. Wave impedance. [C06]   

5. An air filled circular waveguide is to have dimensions such that fc = 0.6f for TE11 

mode and is to be operated at 4 GHz. [C06]   

1. Determine i) diameter of the waveguide ii) guide wavelength 

6. Find i) cutoff wavelength, ii) cutoff frequency, iii) wavelength in the guide for the 

dominant mode of operation in an air filled circular waveguide of inner diameter 6 

cm. [C06]   

7. A TE11 wave is propagating through a circular waveguide. If the guide is air filled and 

the diameter of the guide is 8 cm. Find i) cutoff frequency, ii) guide wavelength for 

frequency of 4 GHz, and iii) the wave impedance. [C06]   

8. An air filled circular waveguide having radius of 5 cm is being operated at 3 GHz. 

Find its i) cut-off frequency, ii) cut-off wavelength and iii) phase velocity for TE11 

mode. [C06]   

9. An air filled circular waveguide having radius of 1.2 cm is being in TM01 mode. 

Determine its i) cut-off frequency, ii) guide wavelength and iii) phase velocity at 10 

GHz. [C06]   

10. An air filled circular waveguide having radius of 8 cm is being operated at 4 GHz. 

Find its i) cut-off frequency, ii) cut-off wavelength and iii) phase velocity for TM01 

mode. [C06]   

SECTION-C 

1. Degenerative modes in circular waveguides are     [ ] 

A) TE01 and TM11      B) TM01 and TE11   

C)  TE22 and TM22       D) TE10 and TE01 

2. The guide wavelength  is given by      [ ]             

(a) 2  =     
(b)

  
( )

222 m a    = −
 

(c)
  

( )
2

2 1 c     = +
   

(d)  All 
         

3. The phase shift constant  of the guided wave is     [ ]              

(a)
 

( )
22 m a   = −

   
(b)

 
( )

2
1 cf f  = +

 

(c)
 

( )
2

1 c    = +
   

(d) All.
  

4. The cut off frequency of the guided wave is     [ ]            

(a)
 

2
c

a
f

m
=

 

(b)

  
2

c

m
f

a 
=

 

(c)

  
2

c

a
f

m 
=

 

(d) None

 


